首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate that absolute, molecular-level structural information can be obtained from solid-state NMR measurements on partially oriented amyloid fibrils. Specifically, we show that the direction of the fibril axis relative to a carbonyl 13C chemical shift anisotropy (CSA) tensor can be determined from magic-angle spinning (MAS) sideband patterns in 13C NMR spectra of fibrils deposited on planar substrates. Deposition of fibrils on a planar substrate creates a highly anisotropic distribution of fibril orientations (hence, CSA tensor orientations) with most fibrils lying in the substrate plane. The anisotropic orientational distribution gives rise to distorted spinning sideband patterns in MAS spectra from which the fibril axis direction can be inferred. The experimentally determined fibril axis direction relative to the carbonyl CSA tensor of Val12 in fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta1-40) agrees well with the predictions of a recent structural model (Petkova et al. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 16742-16747) in which Val12 is contained in a parallel beta-sheet in the cross-beta motif characteristic of amyloid fibrils.  相似文献   

2.
Dynamic nuclear polarization (DNP) permits a approximately 10(2)-10(3) enhancement of the nuclear spin polarization and therefore increases sensitivity in nuclear magnetic resonance (NMR) experiments. Here, we demonstrate the efficient transfer of DNP-enhanced (1)H polarization from an aqueous, radical-containing solvent matrix into peptide crystals via (1)H-(1)H spin diffusion across the matrix-crystal interface. The samples consist of nanocrystals of the amyloid-forming peptide GNNQQNY(7-13), derived from the yeast prion protein Sup35p, dispersed in a glycerol-water matrix containing a biradical polarizing agent, TOTAPOL. These crystals have an average width of 100-200 nm, and their known crystal structure suggests that the size of the biradical precludes its penetration into the crystal lattice; therefore, intimate contact of the molecules in the nanocrystal core with the polarizing agent is unlikely. This is supported by the observed differences between the time-dependent growth of the enhanced polarization in the solvent versus the nanocrystals. Nevertheless, DNP-enhanced magic-angle spinning (MAS) spectra recorded at 5 T and 90 K exhibit an average signal enhancement epsilon approximately 120. This is slightly lower than the DNP enhancement of the solvent mixture surrounding the crystals (epsilon approximately 160), and we show that it is consistent with spin diffusion across the solvent-matrix interface. In particular, we correlate the expected DNP enhancement to several properties of the sample, such as crystal size, the nuclear T(1), and the average (1)H-(1)H spin diffusion constant. The enhanced (1)H polarization was subsequently transferred to (13)C and (15)N via cross-polarization, and allowed rapid acquisition of two-dimensional (13)C-(13)C correlation data.  相似文献   

3.
Amyloid fibril diseases are characterized by the abnormal production of aggregated proteins and are associated with many types of neuro- and physically degenerative diseases. X-ray diffraction techniques, solid-state magic-angle spinning NMR spectroscopy, circular dichroism (CD) spectroscopy, and transmission electron microscopy studies have been utilized to detect and examine the chemical, electronic, material, and structural properties of amyloid fibrils at up to angstrom spatial resolution. However, X-ray diffraction studies require crystals of the fibril to be analyzed, while other techniques can only probe the bulk solution or solid samples. In the work reported here, apertureless near-field scanning infrared microscopy (ANSIM) was used to probe the secondary structure of individual amyloid fibrils made from an in vitro solution. Simultaneous topographic and infrared images of individual amyloid fibrils synthesized from the #21-31 peptide fragment of β(2)-microglobulin were acquired. Using this technique, IR spectra of the amyloid fibrils were obtained with a spatial resolution of less than 30 nm. It is observed that the experimental scattered field spectrum correlates strongly with that calculated using the far-field absorption spectrum. The near-field images of the amyloid fibrils exhibit much lower scattering of the IR radiation at approximately 1630 cm(-1). In addition, the near-field images also indicate that composition and/or structural variations among individual amyloid fibrils were present.  相似文献   

4.
The impact of crystal size on the transition orthorhombic ↔ monoclinic phase in MFI-type purely silica zeolites is investigated between 293 and 473 K using 29Si MAS NMR and powder X-ray diffraction. Three silicalite-1 zeolites are synthesized: a material constituted of micron-sized crystals, pseudospherical nanometer-sized crystals and hierarchical porous zeolites with a mesoporous network created by the use of a gemini-type diquaternary ammonium surfactant giving nanosheet zeolites. Our results show for the first time that the orthorhombic ↔ monoclinic phase transition already known for micron-sized particles also occurs in nanometer-sized zeolite crystals whereas our data suggest that the extreme downsizing of the zeolite crystal to one unit cell in thickness leads to an extinction of the phase transition.  相似文献   

5.
We demonstrate a solid-state nuclear magnetic resonance technique, with the acronym ROCSA-LG, for the determination of backbone torsion angles psi in peptides with multiple, but isolated, uniformly labeled residues. The method correlates the 13C' chemical shift anisotropy and the 13Calpha-1Halpha heteronuclear dipolar tensors within a single uniformly labeled residue in a two-dimensional (2D) experiment. The technique requires the measurement of only five 2D spectra and is compatible with high-speed magic-angle spinning. Experimental results are presented for the 17-residue alpha-helical peptide MB(i+4)EK and for amyloid fibrils formed by the 15-residue peptide Abeta11-25.  相似文献   

6.
Congo red has been used to identify amyloid fibrils in tissues for more than 80 years and is also a weak inhibitor to both amyloid-beta fibril formation and toxicity. However, the specificity of the binding and its inhibition mechanism remain unclear. Using all-atom molecular dynamics simulations with the explicit solvent model, we have identified and characterized two specific binding modes of Congo red molecules to a protofibril formed by an amyloidogenic fragment (GNNQQNY) of the yeast prion protein Sup35. The observation of dual-mode was consistent with the experimentally observed dual-mode binding to Abeta fibrils by a series of compounds similar to Congo red. In the primary mode, Congo red bound to a regular groove formed by the first three residues (GNN) of the beta-strands along the beta-sheet extension direction. Comparative simulations demonstrated that Thioflavin T also bound to the grooves on KLVFFAE protofibril surface. Because of the ubiquitous long grooves on the amyloid fibril surface, we propose that this binding interaction could be a general recognition mode of amyloid fibrils by Congo red, Thioflavin T, and other long flat molecules. In the secondary mode, Congo red bound parallel to the beta-strands on the edge or in the middle of a beta-sheet. The primary binding mode of Congo red and GNNQQNY protofibril was more stable than the secondary mode by -5.7 kcal/mol as estimated by the MM-GBSA method. Detailed analysis suggests that the hydrophobic interactions play important roles for burial of the hydrophobic part of the Congo red molecules. Two potential inhibition mechanisms of disrupting beta-sheet stacking were inferred from the primary mode, which could be exploited for the development of non-peptidic amyloid-specific inhibitors.  相似文献   

7.
Solid-state (17)O NMR spectroscopy is employed to characterize powdered samples of known monoclinic and orthorhombic modifications of (17)O-enriched triphenylphosphine oxide, Ph(3)PO. Precise data on the orientation-dependent (17)O electric field gradient (EFG) and chemical shift (CS) tensors are obtained for both polymorphs. While the (17)O nuclear quadrupolar coupling constants (C(Q)) are essentially identical for the two polymorphs (C(Q) = -4.59 +/- 0.01 MHz (orthorhombic); C(Q) = -4.57 +/- 0.01 MHz (monoclinic)), the spans (Omega) of the CS tensors are distinctly different (Omega = 135 +/- 3 ppm (orthorhombic); Omega = 155 +/- 5 ppm (monoclinic)). The oxygen CS tensor is discussed in terms of Ramsey's theory and the electronic structure of the phosphorus-oxygen bond. The NMR results favor the hemipolar sigma-bonded R(3)P(+)-O(-) end of the resonance structure continuum over the multiple bond representation. Indirect nuclear spin-spin (J) coupling between (31)P and (17)O is observed directly in (17)O magic-angle-spinning (MAS) NMR spectra as well as in (31)P MAS NMR spectra. Ab initio and density-functional theory calculations of the (17)O EFG, CS, and (1)J((31)P,(17)O) tensors have been performed with a variety of basis sets to complement the experimental data. This work describes an interesting spin system for which the CS, quadrupolar, J, and direct dipolar interactions all contribute significantly to the observed (17)O NMR spectra and demonstrates the wealth of information which is available from NMR studies of solid materials.  相似文献   

8.
We report for the first time on the templating effect of β-lactoglobulin amyloid-like fibrils to synthesize gold single crystals of several decades of μm in dimensions. The gold single crystals were produced by reducing an aqueous solution of chloroauric acid by β-lactoglobulin amyloid protein fibrils. Atomic force microscopy, conventional and scanning transmission electron microscopy, electron diffraction and optical microscopy techniques were combined to characterize the structure of the gold crystals. The single-crystalline features of these macroscopic gold crystals are witnessed by their distinctive hexagonal and triangular shape and are confirmed by selected area electron diffraction (SAED). UV-vis absorption spectrum, recorded after a reaction time of 6h at the heating temperature of 55°C showed a surface plasmon resonance peak at 540 nm. With the increase of reaction time to 24h, the absorption spectrum peaks shift to a very broad and higher wavelength region extending up to near infrared region. Remarkably, these single crystalline gold crystals show auto fluorescence when illuminated to UV lamp. Further increase in β-lactoglobulin amyloid fibrils concentration above the isotropic-nematic transition, drives the formation of gold single crystals microplates stacking together and self-assembling into new hierarchical, layered protein-gold hybrid composites.  相似文献   

9.
Here we examine the effect of magic-angle spinning (MAS) rate upon lineshape and observed peak position for backbone carbonyl (C') peaks in NMR spectra of uniformly-(13)C,15N-labeled (U-(13)C,15N) solid proteins. 2D N-C' spectra of U-(13)C,15N microcrystalline protein GB1 were acquired at six MAS rates, and the site-resolved C' lineshapes were analyzed by numerical simulations and comparison to spectra from a sparsely labeled sample (derived from 1,3-(13)C-glycerol). Spectra of the U-(13)C,15N sample demonstrate large variations in the signal-to-noise ratio and peak positions, which are absent in spectra of the sparsely labeled sample, in which most 13C' sites do not possess a directly bonded 13CA. These effects therefore are a consequence of rotational resonance, which is a well-known phenomenon. Yet the magnitude of this effect pertaining to chemical shift assignment has not previously been examined. To quantify these effects in high-resolution protein spectra, we performed exact numerical two- and four-spin simulations of the C' lineshapes, which reproduced the experimentally observed features. Observed peak positions differ from the isotropic shift by up to 1.0 ppm, even for MAS rates relatively far (a few ppm) from rotational resonance. Although under these circumstances the correct isotropic chemical shift values may be determined through simulation, systematic errors are minimized when the MAS rate is equivalent to approximately 85 ppm for 13C. This moderate MAS condition simplifies spectral assignment and enables data sets from different labeling patterns and spinning rates to be used most efficiently for structure determination.  相似文献   

10.
Amyloid fibrils are affiliated with various human pathologies. Knowledge of their molecular architecture is necessary for a detailed understanding of the mechanism of fibril formation. Vibrational circular dichroism (VCD) spectroscopy has recently shown sensitivity to amyloid fibrils [Ma et al. J. Am. Chem. Soc. 2007, 129, 12364 and Measey et al. J. Am. Chem. Soc. 2009, 131, 18218]. In particular, amyloid fibrils give rise to an intensity enhanced signal in the amide I band region of the corresponding VCD spectrum, offering promise of utilizing such a method for probing fibrillogenesis and the chiral structure of fibrils. Herein, we further investigate this phenomenon and demonstrate the use of VCD to probe the fibril formation kinetics of a short alanine-rich peptide. To elucidate the origin of the anomalous VCD intensity enhancement, we use an excitonic coupling model to simulate the VCD spectrum of stacked β-sheets containing one (Ising-like model) and two amide I oscillators per strand, as models for the underlying amyloid-fibril secondary structure. With this simple model, we show that the VCD intensity enhancement of amyloid-like fibrils results from intrasheet and, to a more limited extent, also from intersheet vibrational coupling between stacked β-sheets. The enhancement requires helically twisted sheets and is most pronounced for arrangements with parallel-oriented strands. Both the intersheet distance and the orientation of the amide I transition dipole moments of neighboring sheets are found to modulate the intensity enhancement of the amide I VCD signal. Moreover, our simulations suggest that, depending on the three-dimensional arrangement of the β-strands, the sign of the VCD signal of amyloid-like fibrils can be used to distinguish between right- and left-handed helical twists of parallel-oriented β-sheets. We compare the results of our simulation to experimental spectra of two short peptides, GNNQQNY, the N-terminal peptide fragment of the yeast prion protein Sup35, and an amyloidogenic alanine-rich peptide, AKY8. Our results demonstrate the advantages of using VCD spectroscopy to probe the kinetics of peptide and protein aggregation as well as the chirality of the resulting supramolecular structure.  相似文献   

11.
BACKGROUND: Normally, gelsolin functions in plasma as part of the actin-scavenging system to assemble and disassemble actin filaments. The Asp 187-->Asn (D187N) Asp 187-->Tyr (D187Y) gelsolin mutations facilitate two proteolytic cuts in the parent protein generating a 71-residue fragment that forms amyloid fibrils in humans, putatively causing Finnish type familial amyloidosis (FAF). We investigated the role of the D187N mutation in amyloidogenicity using biophysical studies in vitro. RESULTS: Both the recombinant wild-type and D187N FAF-associated gelsolin fragments adopt an ensemble of largely unfolded structures that do not self-associate into amyloid at pH 7. 5. Incubation of either fragment at low pHs (6.0-4.0) leads to the formation of well-defined fibrils within 72 hours, however. CONCLUSIONS: The D187N mutation has been suggested to destabilize the structure of the gelsolin parent protein (specifically domain 2), facilitating two proteolytic cleavage events. Our studies demonstrate that generating the largely unstructured peptide is not sufficient alone for amyloid formation in vitro (on a time scale of months). A drop in pH or an analogous environmental change appears necessary to convert the unstructured fragment into amyloid fibrils, probably through an associative mechanism. The wild-type gelsolin fragment will make amyloid fibrils from pH 6 to 4 in vitro, but neither the wild-type fragment nor fibrils have been observed in vivo. It is possible that domain 2 of wild-type gelsolin is stable in the context of the whole protein and not susceptible to the proteolytic degradation that affords the 71-residue FAF-associated peptide.  相似文献   

12.
《Chemistry & biology》1997,4(5):345-355
Background: Peptides derived from three of four putative α-helical regions of the prion protein (PrP) form amyloid in solution. These peptides serve as models for amyloidogenesis and for understanding the α helix → β strand conformational change that is responsible for the development of disease. Kinetic studies of amyloid formation usually rely on the detection of fibrils. No study has yet explored the rate of monomer peptide uptake or the presence of nonfibrillar intermediate species. We present a new electron spin resonance (ESR) method for probing the kinetics of amyloid formation. A spin label was covalently attached to a highly amyloidogenic peptide and kinetic trials were monitored by ESR.Results: Electron microscopy shows that the spin-labeled peptide forms amyloid, and ESR reveals the kinetic decay of free peptide monomer during amyloid formation. The combination of electron microscopy and ESR suggests that there are three kinetically relevant species: monomer peptide, amyloid and amorphous aggregate (peptide aggregates devoid of fibrils or other structures with long-range order). A rather surprising result is that amyloid formation requires the presence of this amorphous aggregate. This is particularly interesting because PrPSc the form of PrP associated with scrapie, is often found as an aggregate and amyloid formation is not a necessary component of prion replication or pathogenesis.Conclusions: Kinetic analysis of the time-dependent data suggests a model whereby the amorphous aggregate has a previously unsuspected dual role: it releases monomer into solution and also provides initiation sites for fibril growth. These findings suggest that the β-sheet-rich PrPSc may be stabilized by aggregation.  相似文献   

13.
Many unrelated proteins and peptides can assemble into amyloid or amyloid-like nanostructures, all of which share the cross-beta motif of repeat arrays of beta-strands hydrogen-bonded along the fibril axis. Yet, paradoxically, structurally polymorphic fibrils may derive from the same initial polypeptide sequence. Here, solid-state nuclear magnetic resonance (SSNMR) analysis of amyloid-like fibrils of the peptide hIAPP 20-29, corresponding to the region S (20)NNFGAILSS (29) of the human islet amyloid polypeptide amylin, reveals that the peptide assembles into two amyloid-like forms, (1) and (2), which have distinct structures at the molecular level. Rotational resonance SSNMR measurements of (13)C dipolar couplings between backbone F23 and I26 of hIAPP 20-29 fibrils are consistent with form (1) having parallel beta-strands and form (2) having antiparallel strands within the beta-sheet layers of the protofilament units. Seeding hIAPP 20-29 with structurally homogeneous fibrils from a 30-residue amylin fragment (hIAPP 8-37) produces morphologically homogeneous fibrils with similar NMR properties to form (1). A model for the architecture of the seeded fibrils is presented, based on the analysis of X-ray fiber diffraction data, combined with an extensive range of SSNMR constraints including chemical shifts, torsional angles, and interatomic distances. The model features a cross-beta spine comprising two beta-sheets with an interface defined by residues F23, A25, and L27, which form a hydrophobic zipper. We suggest that the energies of formation for fibril form containing antiparallel and parallel beta-strands are similar when both configurations can be stabilized by a core of hydrophobic contacts, which has implications for the relationship between amino acid sequence and amyloid polymorphism in general.  相似文献   

14.
Amyloidogenic deposits that accumulate in brain tissue with the progression of Alzheimer's disease contain large amounts of the amyloid beta-peptide. A small fragment of this peptide, comprising residues 16-22 (Abeta(16-22)), forms beta-sheets in isolation, which then aggregate into amyloid fibrils. Here, using isotope edited infrared spectroscopy to probe the secondary structure of the peptide with residue level specificity, we are able to show conclusively that the beta-sheets formed are antiparallel and, following an anneal cycle or prolonged incubation, are in register with the central residue (Phe19) in alignment across all strands. The alignment of strands proceeds via a rapid interchange from one sheet to another. This realignment of the peptide strands into a more favorable registry may have important implications for therapeutics since previous work has shown that well aligned beta-sheets form more stable amyloid fibrils.  相似文献   

15.
A complex fine structure in the C? H stretching region of the infrared spectrum of deformed polyethylene single crystals is reported. The deformed crystals are shown to be transformed from the orthorhombic crystal form to a monoclinic structure. The previously deduced C2/m monoclinic structure does not account for the appearance of the new bands. An alternative but similar monoclinic structure is proposed. The symmetry of this structure is consistent with the Fermi resonance interactions required for the observation of these bands.  相似文献   

16.
When oriented polyethylene is sheared at an angle to the orientation axis, kink bands often develop and grow, with a resulting change of the crystalline orientation. Beside the crystalline reorientation, the following changes within the kink bands have been observed with wide-angle x-rays: (a) partial transformation to a monoclinic from the normal orthorhombic unit cell; (b) partial alignment of the orthorhombic b axes; (c) rotation of the orthorhombic c axes of a fraction of the crystals around the kinks by an extra 40 to 60° beyond that of the fibrils; and (d) misalignment of the orthorhombic (hk0) planes by a few degrees. These results are suggested to arise, at least in part, from crystal flattening and from crystal twinning or pseudotwinning on planes intersecting the molecular axes.  相似文献   

17.
18.
Polymorphism is a wide‐spread feature of amyloid‐like fibrils formed in vitro, but it has so far remained unclear whether the fibrils formed within a patient are also affected by this phenomenon. In this study we show that the amyloid fibrils within a diseased individual can vary considerably in their three‐dimensional architecture. We demonstrate this heterogeneity with amyloid fibrils deposited within different organs, formed from sequentially non‐homologous polypeptide chains and affecting human or animals. Irrespective of amyloid type or source, we found in vivo fibrils to be polymorphic. These data imply that the chemical principles of fibril assembly that lead to such polymorphism are fundamentally conserved in vivo and in vitro.  相似文献   

19.
SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) nanocrystals have been synthesized by the combustion method. The results of XRD indicated that the resulting SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) nanocrystals have a reduced and distorted monoclinic lattice compared with bulk materials. The spectral properties are measured, and it is found that the excitation peaks of 5d energy levels red shift in nanocrystals in contrast to that in bulk crystals. The mechanism of spectra and energy changes is investigated. The order of the degree of red shift for nano SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) crystals is Pr(3+) > Ce(3+) > Tb(3+), which is in good agreement with our predicted results.  相似文献   

20.
We show that strong constraints on supramolecular structure in amyloid fibrils can be obtained from solid-state nuclear magnetic resonance measurements on samples with uniformly 13C-labeled segments. The measurements exploit two-dimensional (2D) 13C-13C exchange spectroscopy in conjunction with high-speed magic angle spinning, with proton-mediated exchange of 13C nuclear spin magnetization as recently demonstrated by Baldus and co-workers (J. Am. Chem. Soc. 2002, 124, 9704-9705). Proton-mediated 2D exchange spectra of fibrils formed by residues 16-22 of the 40-residue Alzheimer's beta-amyloid peptide show strong nonsequential, intermolecular cross-peaks between alpha-carbons that dictate an antiparallel beta-sheet structure in which residue 16+k aligns with residue 22-k. The strong alpha/alpha cross-peaks are absent from conventional, direct 2D exchange spectra. Proton-mediated 2D exchange spectra of fibrils formed by residues 11-25 indicate an antiparallel beta-sheet structure with a pH-dependent intermolecular alignment. In contrast, proton-mediated 2D exchange spectra of fibrils formed by the full-length beta-amyloid peptide are consistent with a parallel beta-sheet structure. These data show that the supramolecular structure of amyloid fibrils is not determined by the amino acid sequence at the level of 7-residue or 15-residue segments. The proton-mediated 2D exchange spectra additionally demonstrate that the intermolecular alignment in the beta-sheets of these amyloid fibrils is highly ordered, with no detectable evidence for "misalignment" defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号