首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni-Fe-B-Si-Nb coatings have been deposited on mild steel substrates using high power laser cladding process followed by laser remelting. The influence of Ni-to-Fe concentration ratio in (Ni100−xFex)62B18Si18Nb2 (x = 55, 50, 45 and 40) powders on the phase composition and microstructure is analyzed by X-ray diffraction, scanning- and transmission-electron microscopies. The microhardness and corrosion resistance properties of the coatings are also measured. The results reveal that amorphous matrix layers are obtained for all coatings. The increase of the Ni-to-Fe ratio can promote the formation of γ(Fe-Ni) phase and decrease the formation of Fe2B phase and α-Fe phase. The coating with 1:1 ratio of Ni-to-Fe exhibits the highest microhardness of 1200 HV0.5 and superior corrosion resistance property due to its largest volume fraction of amorphous phase in the coating. Higher or lower than 1:1 ratio of Ni-to-Fe may result in lower amorphous forming ability. However, even that the coating with ratio of 3:2, shows a minimum of microhardness, it shows a better corrosion resistance than other two coatings.  相似文献   

2.
A novel Ni-B/TiC composite coating was synthesized by ultrasonic-assisted direct current electrodeposition. Ultrasonic technology was adopted to prevent the agglomeration of nanoparticle, improve the structure and corrosion resistance, using an ultrasonic bath at frequency 40 KHz and acoustic power 300 W. The influences of current density and deposition time on its structure and electrochemical behaviors were studied. Under ultrasonic dispersion, the composite coatings are smooth, compact with protrusion structure sparsely distributed on it. The average roughness (Sa) was about 13.6–26.1 nm. The crystallite size is 10–21 nm. The preferred orientation is Ni (1 1 1) texture. EIS results indicated that the corrosion resistance was greatly improved by ultrasonic-assisted method. The corrosion mechanism is consistent with one-time constant EEC model of Rs(CPEdlRct). With the increase of immersion time, the Rct of the composite coating often first increased and then decreased. Under ultrasonic, current density 2 A dm−2 and deposition time 20 min were the appropriate parameters for the optimal corrosion resistance and excellent long-term electrochemical stability in 3.5 wt% NaCl corrosive solution. This coating shows good application prospect for corrosion protection in aggressive environment.  相似文献   

3.
Ni-Zn-P-TiO2 composite coatings were successfully obtained on low carbon steel by electroless plating technique. Deposits were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis (EDS) studies. The hardness and microstructure of as plated and heat treated Ni-Zn-P and Ni-Zn-P-TiO2 composite coatings were analyzed. The change in microstructure and higher hardness was noticed for heat treated composite. The corrosion resistance behavior of as plated and heat treated Ni-Zn-P and Ni-Zn-P-TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5 wt% NaCl solution. The composite coating exhibited enhanced corrosion resistance property over Ni-Zn-P coating.  相似文献   

4.
In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd2O3 in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn3(PO4)2 · 4H2O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd2O3 reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.  相似文献   

5.
The aim of this work is to study the effects of duty ratio on the growth mechanism of the ceramic coatings on Ti-6Al-4V alloy prepared by pulsed single-polar MPO at 50 Hz in NaAlO2 solution. The phase composition of the coatings was studied by X-ray diffraction, and the morphology and the element distribution in the coating were examined through scanning electron microscopy and energy dispersive spectroscopy. The thickness of the coatings was measured by eddy current coating thickness gauge. The corrosion resistance of the coated samples was examined by linear sweep voltammetry technique in 3.5% NaCl solution. The changes of the duty ratio (D) of the anode process led to the changes of the mode of the spark discharge during the pulsed single-polar MPO process, which further influenced the structure and the morphology of the ceramic coatings. The coatings prepared at D = 10% were composed of a large amount of Al2TiO5 and a little γ-Al2O3 while the coatings prepared at D = 45% were mainly composed of α-Al2O3 and γ-Al2O3. The coating thickness and the roughness were both increased with the increasing D due to the formation of Al2O3. The formation of Al2TiO5 resulted from the spark discharge due to the breakdown of the oxide film, while the formation of Al2O3 resulted from the spark discharge due to the breakdown of the vapor envelope. The ceramic coatings improved the corrosion resistance of Ti-6Al-4V alloy. And the surface morphology and the coating thickness determined the corrosion resistance of the coated samples prepared at D = 45% was better than that of the coated samples prepared at D = 10%.  相似文献   

6.
磁场辅助激光熔覆制备Ni60CuMoW复合涂层   总被引:2,自引:2,他引:0       下载免费PDF全文
采用磁场辅助激光熔覆技术,在Q235钢表面制备了Ni60CuMoW复合涂层,借助SEM,EDS 和XRD 等表征手段对涂层进行了微观组织和物相分析,利用维氏硬度计测试了复合涂层截面的显微硬度分布,通过摩擦磨损实验和电化学测试系统研究了复合涂层的磨损性能和耐腐蚀性能。研究结果表明:涂层主要由-Ni,Cu)固溶体、硅化物和硼化物组成,Cr3Si晶粒细化且均匀致密;磁场辅助作用下,激光熔覆涂层平均显微硬度达到913HV0.5,为无磁场辅助涂层的1.5 倍,磨损失重仅为无磁场涂层的36%,自腐蚀电位上升了100 mV,腐蚀电流密度降低了70%,耐磨耐蚀性能得到了显著改善。  相似文献   

7.
In this paper, TaxC1−x coatings were deposited on 316L stainless steel (316L SS) by radio-frequency (RF) magnetron sputtering at various substrate temperatures (Ts) in order to improve its corrosion resistance and hemocompatibility. XRD results indicated that Ts could significantly change the microstructure of TaxC1−x coatings. When Ts was <150 °C, the TaxC1−x coatings were in amorphous condition, whereas when Ts was ≥150 °C, TaC phase was formed, exhibiting in the form of particulates with the crystallite sizes of about 15-25 nm (Ts = 300 °C). Atomic force microscope (AFM) results showed that with the increase of Ts, the root-mean-square (RMS) values of the TaxC1−x coatings decreased. The nano-indentation experiments indicated that the TaxC1−x coating deposited at 300 °C had a higher hardness and modulus. The scratch test results demonstrated that TaxC1−x coatings deposited above 150 °C exhibited good adhesion performance. Tribology tests results demonstrated that TaxC1−x coatings exhibited excellent wear resistance. The results of potentiodynamic polarization showed that the corrosion resistance of the 316L SS was improved significantly because of the deposited TaxC1−x coatings. The platelet adhesion test results indicated that the TaxC1−x coatings deposited at Ts of 150 °C and 300 °C possessed better hemocompatibility than the coating deposited at Ts of 25 °C. Additionally, the hemocompatibility of the TaxC1−x coating on the 316L SS was found to be influenced by its surface roughness, hydrophilicity and the surface energy.  相似文献   

8.
Titanium was laser nitrided by means of free-electron laser irradiation in pure nitrogen atmosphere. The variation of pulse frequency and macropulse duration of the free electron laser resulted in δ-TiNx coatings with different thickness and different micro- and macroscopic morphologies. The coatings revealed, characteristic values for hardness, roughness and crystallographic texture, which originate from the growth mechanism, the solid-liquid interface energy and the strain. Further investigations showed that the dendritic growth is beginning at the surface and that the alignment of dendrites is normal to the surface. A correlation of the texture with the time structure of the laser pulses was found. Numerical simulations were performed and compared with the experimental results. The simulations can explain the experimental results.  相似文献   

9.
In the present work, a novel process has been developed to improve the tribological and corrosion properties of austenitic stainless steels. Efforts have been made to deposit titanium coatings onto AISI 316L stainless steel by magnetron sputtering, and then to partially convert the titanium coatings to titanium oxide by thermal oxidation. The resultant coating has a layered structure, comprising of rutile-TiO2 layer at the top, an oxygen and nitrogen dissolved α-Ti layer in the middle and a diffuse-type interface. Such a hybrid coating system showed good adhesion with the substrate, improved corrosion resistance, and significantly enhanced surface hardness and tribological properties of the stainless steel in terms of much reduced friction coefficient and increased wear resistance.  相似文献   

10.
The composition and structure-property relationships of physical vapour deposited coatings containing mixtures of CrB2 and MoS2 are reported. The coatings were produced by pulsed magnetron sputtering of loosely-packed powder targets formed from a blend of chromium and boron powders, alloyed with 12.8, 18.9 and 24.0 atom percent MoS2. Results of coating characterisation (by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Auger electron spectroscopy and nanoindentation measurement of hardness and elastic modulus) revealed that increasing amounts of MoS2 produced the following effects: frustration of crystallisation and phase separation; a decrease in average grain sizes (from ∼5.5 to ∼ 4.3 nm) and a decrease in coating hardness (from ∼15 to ∼ 10 GPa). Scratch testing also showed that the load-bearing capability of coatings was altered; coatings possessing an intermediate concentration of MoS2 exhibited the best behaviour with no failure observed in mechanical testing, due to an optimal nanocomposite structure. The corrosion resistance (investigated by potentiodynamic polarisation tests) however tended to improve as more MoS2 was introduced. An investigation of the effects of generating an amorphous structure by adding Ti and C into Cr-B-MoS2 coatings revealed improved corrosion behaviour, which significantly exceeded that of uncoated stainless steel and CrB2-coated samples. PACS 68.37.Lp; 68.55.A-; 68.55.Ln; 68.55.Nq; 68.60.Bs  相似文献   

11.
Ceramic coatings were fabricated on AZ91D Mg-alloy substrate by microarc oxidation in Na2SiO3-NaOH-Na2EDTA electrolytes with and without C3H8O3 addition. The effects of different concentrations of C3H8O3 contained in the electrolyte on coatings thickness were investigated. The surface morphologies, RMS roughness, phase compositions and corrosion resistance property of the ceramic coatings were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and electrochemical corrosion test respectively. It is found that the addition of C3H8O3 into silicate electrolyte leads to increase of the unit-area adsorptive capacity of the negative ions at anode-electrolyte interface and thus improves the compactness and corrosion resistance of the MAO coating. The coating thickness decreases gradually with the increase of concentrations of C3H8O3 in the electrolyte. The oxide coating formed in base electrolyte containing 4 mL/L C3H8O3 exhibits the best surface appearance, the lowest surface RMS roughness (174 nm) and highest corrosion resistance. In addition, both ceramic coatings treated in base electrolyte with and without C3H8O3 are mainly composed of periclase MgO and forsterite Mg2SiO4 phase, but no diffraction peak of Mg phase is found in the patterns.  相似文献   

12.
Microarc oxidation coatings on AM60B magnesium alloy were prepared in silicate and phosphate electrolytes. Structure, composition, mechanical property, tribological, and corrosion resistant characteristics of the coatings was studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and microhardness analyses, and by ball-on-disc friction and potentiodynamic corrosion testing. It is found that the coating produced from the silicate electrolyte is compact and uniform and is mainly composed of MgO and forsterite Mg2SiO4 phases, while the one formed in phosphate electrolyte is relatively porous and is mainly composed of MgO phase. The thick coating produced from a silicate electrolyte possesses a high hardness and provides a low wear rate (3.55 × 10−5 mm3/Nm) but a high friction coefficient against Si3N4 ball. A relatively low hardness and friction coefficient while a high wear rate (8.65 × 10−5 mm3/Nm) is recorded during the testing of the thick coating produced from a phosphate electrolyte. Both of these types of coatings provide effective protection for the corrosion resistance compared with the uncoated magnesium alloy. The coating prepared from the silicate electrolyte demonstrates better corrosion behavior due to the compacter microstructure.  相似文献   

13.
Surface modification of AISI316 stainless steel by laser melting was investigated experimentally using 2 and 4 kW laser power emitted from a continuous wave CO2 laser at different specimen scanning speeds ranged from 300 to 1500 mm/min. Also, an investigation is reported of the introduction of carbon into the same material by means of laser surface alloying, which involves pre-coating the specimen surfaces with graphite powder followed by laser melting. The aim of these treatments is to enhance corrosion resistance by the rapid solidification associated with laser melting and also to increase surface hardness without affecting the bulk properties by increasing the carbon concentration near the surface. Different metallurgical techniques such as optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to characterize the microstructure of the treated zone. The microstructures of the laser melted zones exhibited a dendritic morphology with a very fine scale with a slight increase in hardness from 200 to 230 Hv. However, the laser alloyed samples with carbon showed microstructure consisting of γ dendrite surrounded by a network of eutectic structures (γ+carbide). A significant increase in hardness from 200 to 500 Hv is obtained. Corrosion resistance was improved after laser melting, especially in the samples processed at high laser power (4 kW). There was shift in Icorr and Ecorr toward more noble values and a lower passive current density than that of the untreated materials. These improvements in corrosion resistance were attributed to the fine and homogeneous dendritic structure, which was found throughout the melted zones. The corrosion resistance of the carburized sample was lower than the laser melted sample.  相似文献   

14.
《Current Applied Physics》2010,10(3):719-723
In order to improve the corrosion resistance of ceramic coatings formed on Mg–5mass%Li substrate by micro-arc oxidation (MAO) method, two kinds of additives (Na2B4O7 and EDTA) were doped in Na2SiO3–Na3PO4 solution system. The surface and cross-section morphology feature, phase composition and elemental composition were examined by SEM, XRD and EDX, respectively. Corrosion resistance of ceramic coating was tested by electrochemical methods. It was revealed that all coatings were composed of MgO and Mg2SiO4, and had porous surface structure. Doping of additives had little effect on the elemental composition, while it influenced the morphological feature of the coating. The results of electrochemical tests showed that the coatings prepared in the solutions with additive had good corrosion resistance. The addition of EDTA to the solution made coatings thinner and more uniform which resulted in better general corrosion resistance. The addition of Na2B4O7 to the solution made coatings much thicker and compacter, which improved the pitting corrosion resistance.  相似文献   

15.
The cluster line criterion was used for optimized design of a Ni-Zr-Al alloy used as coating on the AZ91HP magnesium alloy by laser cladding. Results show that the coating mainly consists of an amorphous, two ternary intermetallic phases with Ni10Zr7 and Ni21Zr8 type structures resulting in high hardness, good wear resistance and corrosion resistance. The interface between the clad layer and the substrate has good metallurgical bond.  相似文献   

16.
Ni-Co/nano TiO2 (Ni-Co-TiO2) composite coatings were prepared under pulse current and pulse reverse current methods using acetate bath. The microstructure and corrosion resistance of the coatings were characterized by means of XRD, SEM and EIS. Both the Ni-Co alloy and composite coatings exhibited single phase of Ni matrix with face centered cubic (fcc) crystal structure. The crystal orientation of the Ni-Co-TiO2 composite coating was transformed from crystal face (2 0 0) to (1 1 1) compared with Ni-Co alloy coatings. The results showed that the microstructure and performances of the coatings were greatly affected by TiO2 content on the deposits prepared by PC and PRC methods. The microhardness and corrosion resistance were enhanced in the optimum percentage of TiO2 composite coatings. The PRC composite coatings were exhibited from compact surface, higher microhardness and good corrosion resistance compared with that of the PC composite coating.  相似文献   

17.
The aim of this work is to improve the mechanical properties of AISI 4140 steel substrates by using a TiN[BCN/BN]n/c-BN multilayer system as a protective coating. TiN[BCN/BN]n/c-BN multilayered coatings via reactive r.f. magnetron sputtering technique were grown, systematically varying the length period (Λ) and the number of bilayers (n) because one bilayer (n = 1) represents two different layers (tBCN + tBN), thus the total thickness of the coating and all other growth parameters were maintained constant. The coatings were characterized by Fourier transform infrared spectroscopy showing bands associated with h-BN bonds and c-BN stretching vibrations centered at 1400 cm−1 and 1100 cm−1, respectively. Coating composition and multilayer modulation were studied via secondary ion mass spectroscopy. Atomic force microscopy analysis revealed a reduction in grain size and roughness when the bilayer number (n) increased and the bilayer period decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period (Λ) was 80 nm (n = 25), yielding the relative highest hardness (∼30 GPa) and elastic modulus (230 GPa). The values for the hardness and elastic modulus are 1.5 and 1.7 times greater than the coating with n = 1, respectively. The enhancement effects in multilayered coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain increased hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayered coatings taking into account the thickness reduction at individual single layers that make up the multilayered system. The Hall-Petch model based on dislocation motion within layered and across layer interfaces has been successfully applied to multilayered coatings to explain this hardness enhancement.  相似文献   

18.
Alumina ceramic coatings were fabricated on 304 stainless steel by cathodic plasma electrolytic deposition (CPED). Influence of treating frequency of the power supply on the microstructure and properties of the coatings were studied. The results indicated that coatings obtained at various frequencies on 304 stainless steels were all composed of α-Al2O3 and γ-Al2O3, and α-Al2O3 was the dominant phase. The contents of α-Al2O3 decreased gradually in a very small rate with increasing the frequency and γ-Al2O3 gradually increased. The surface of alumina ceramic coating was porous. With increasing the frequency, the coating surface gradually became less rough and more compact, resulting in low surface roughness. The bonding strength of Al2O3 coating was higher than 22 MPa and was not strongly affected by treating frequency. With increasing the frequency, the alumina coated steels showed better and gradually increasing corrosion resistance than the uncoated one in 3.5% NaCl solution. The coating steel with desirable corrosion resistance was obtained at 800 Hz whose corrosion current potential and corrosion density were −0.237 V and 7.367 × 10−8 A/cm2, respectively.  相似文献   

19.
Advances in materials performance often require the development of composite system. In the present investigation, SiO2-reinforced nickel composite coatings were deposited on a mild steel substrate using direct current electrodeposition process employing a nickel acetate bath. Surface morphology, composition, microstructure and crystal orientation of the Ni and Ni-SiO2 nanocomposite coatings were investigated by scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction analysis, respectively. The effect of incorporation of SiO2 particles in the Ni nanocomposite coating on the microhardness and corrosion behaviour has been evaluated. Smooth composite deposits containing well-distributed silicon oxide particles were obtained. The preferred growth process of the nickel matrix in crystallographic directions <111>, <200> and <220> is strongly influenced by SiO2 nanoparticles. The average crystallite size was calculated by using X-ray diffraction analysis and it was ~23 nm for electrodeposited nickel and ~21 nm for Ni-SiO2 nanocomposite coatings. The crystallite structure was fcc for electrodeposited nickel and Ni-SiO2 nanocomposite coatings. The incorporation of SiO2 particles into the Ni matrices was found to improve corrosion resistance of pure Ni coatings. The corrosion potential (E corr) in the case of Ni-SiO2 nanocomposite coatings had shown a negative shift, confirming the cathodic protective nature of the coating. The Ni-SiO2 composite coatings have exhibited significantly improved microhardness (615 HV) compared to pure nickel coatings (265 HV)  相似文献   

20.
The paper presents a study on the preparation of Al2O3 ceramic coating on AZ91HP Mg alloy by laser remelting plasma-sprayed coating. It was found that after laser remelting, the coating exhibited obvious layer-like characteristics due to influence of temperature distribution, thermophysical parameters and layer thickness. According to the microstructural difference, the coating can be divided into the melted zone with the α-Al2O3 column-like crystal, the sintered zone with flock-like structure, the residual plasma-sprayed zone with loosened structure. Because of the dense column-like crystal, the hardness, wear and corrosion resistance of the laser remelted coating are much higher than those of the plasma-sprayed coating and as-received Mg alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号