首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 2-aminoethanethiol hydrochloride with Hg(2)Cl(2) in water yielded elemental mercury and one-dimensional polynuclear compounds [{Hg(3)Cl(5)(SCH(2)CH(2)NH(3))(3)}Cl](n) and [HgCl(SCH(2)CH(2)NH(2))(H(2)O)(2)](n) (2). The coordination environment around Hg in 1 and 2 is quite variable despite similar reaction conditions. The formation of a five-membered S/N chelate in 2 can be attributed to the use of base to produce a neutral ligand. Three independent types of Hg atoms, both three- and four-coordinate are observed in 1, whereas in 2, the Hg atom is tetracoordinate with S, N and Cl atoms in the primary coordination sphere. Despite distinct structural chemistry, the coordination environments in 1 and 2 are fairly similar with repeating units connected with bridged thiolate S atoms in addition to a terminal Cl attached to Hg. Intermolecular hydrogen-bonding involving amine protons, Cl and water molecules are responsible for a three-dimensional network in both 1 and 2. A short Hg...Hg distance of 3.564 A, indicates the presence of a mercurophilic interaction in 1. The compounds have been characterized by (1)H and (13)C NMR, UV-Vis, FT-IR, Raman, mass spectrometry, TGA and single X-ray crystallography.  相似文献   

2.
Combination of 2-aminoethanethiol hydrochloride and HgI2 in water in the presence of a base yielded a cyclic molecular structure, [Hg4I4(SCH2CH2NH2)4] (1). For the same reaction in the absence of the base, a similar structure with protonated amines was expected; however, polymeric [Hg4I8(SCH2CH2NH3)2]n.nH2O2 was formed instead. The structures are quite variable despite similar reaction conditions. For instance, there is an additional Hg-N interaction in 1 due to the use of base. The environment around tetracoordinate Hg in 1 is comprised of S, N, and I atoms, with the ligand forming a five-membered chelate and the I atoms present alternate to each other. In the repeating unit of 2, three independent types of Hg atoms are observed, with HgSI3, HgS2I2, and HgI4 bonding environments that have both bridging and terminal I atoms. A simple mechanistic pathway for the formation of 1 and 2 is proposed that includes the presence of three- and four-coordinate Hg intermediates in the solution. Intermolecular hydrogen bonding involving N, I, and S in 1 and N, I, and O atoms in 2 create extended three-dimensional networks. The shortest Hg... Hg distances are found to be intrachain in the range 3.938-3.962 A and indicate no interaction between these atoms. The solution studies (UV-vis and NMR) along with solid-state (IR, Raman, and X-ray) studies for 1 and 2 confirm retention of the structural configuration in the solution. The thermal study of 2 indicates that degradation of the complex occurs in a single step, in contrast to 1, which takes a more complicated decomposition pathway.  相似文献   

3.
The present study investigates structural and functional aspects of the redox chemistry of rhenium(III) chloride [Re3Cl9] (1) in aqueous and organic solvents, with emphasis on the dioxygen-activating capabilities of reduced rhenium clusters bearing the Re3(8+) core. Dissolution of 1 in HCl (6 M) generates [Re3(mu-Cl)3Cl9]3- (2a), which can be isolated as the tetraphenylphosphonium salt (2b). Anaerobic one-electron reduction of 1 by Hg in HCl (6-12 M) produces [(C6H5)4P]2[Re3(mu-Cl)3Cl7(H2O)2].H2O (3), the structure of which features a planar [Re3(mu-Cl)3Cl3] framework (Re3(8+) core), involving two water ligands that occupy out-of-plane positions in a trans arrangement. Compound 3 dissociates in the presence of CO, yielding [(C6H5)4P]2[ReIII2Cl8] (4) and an unidentified red carbonyl species. In situ oxidation (O2) of the reduced Re3(8+)-containing cluster in HCl (6 M) produces quantitatively 2a, whereas oxidation of 3 in organic media results in the formation of [(C6H5)4P]4[(Re3(mu-Cl)3Cl7(mu-OH))2].2CH2Cl2 (5). The structure of 5 reveals that two oxygen ligands (hydroxo units) bridge asymmetrically two Re3(9+) triangular clusters. The origin of these hydroxo units derives from the aquo ligands, rather than O2, as shown by 18O2 labeling studies. The hydroxo bridges of 5 can be replaced by chlorides upon treatment with Me3SiCl to afford the analogous [(C6H5)4P]4[(Re3(mu-Cl)3Cl7(mu-Cl))2].10CH2Cl2 (6). The reaction of 5 with Hg in HCl (6 M)/tetrahydrofuran regenerates compound 3. Complexes 1-3 exhibit nitrile hydratase type activity, inducing hydrolysis of CH3CN to acetamide. The reaction of 3 with CH3CN yields [(C6H5)4P]2[Re3(mu-Cl)3Cl6.5(CH3CN)1.5(CH3C(O)NH)0.5] (7), the structure of which is composed of [Re3(mu-Cl)3Cl7(CH3CN)2]2- (7a) and [Re3(mu-Cl)3Cl6(CH3CN)(CH3C(O)NH)]2- (7b) (Re3(8+) cores) as a disordered mixture (1:1). Oxidation of 7 with O2 in CH3CN affords [(C6H5)4P]2[Re3(mu-Cl)3Cl7(CH3C(O)NH)].CH3CN (8) and small amounts of [(C6H5)4P][ReO4] (9). Compound 8 is also independently isolated from the reaction of 2b with wet CH3CN, or by dissolving 5 in CH3CN. In MeOH, 5 dissociates to afford [(C6H5)4P]2[Re3(mu-Cl)3Cl8(MeOH)].MeOH (10).  相似文献   

4.
Under identical conditions, the reaction of 2-aminoethanethiol hydrochloride with HgX(2) (X = Cl and Br) in water yielded discrete hexanuclear [Hg(6)Cl(8)(SCH(2)CH(2)NH(3))(8))]Cl(4).4H(2)O (1) and nonanuclear [Hg(9)Br(15)(SCH(2)CH(2)NH(3))(9)](Cl(0.8)Br(0.2))(3) (2) complexes with unusual coordination environments. Compound 1 crystallizes as triclinic with a = 9.434(2) Angstroms, b = 10.999(2) Angstroms, c = 13.675(7) Angstroms, alpha = 92.9(7) degrees, beta = 105.2(7) degrees, and gamma = 96.9(7) degrees, whereas 2 is monoclinic with a = 14.162(3) Angstroms, b = 8.009(16) Angstroms, c = 19.604(4) Angstroms, alpha = gamma = 90.0 degrees, and beta = 92.7(3) degrees. In both cases, it is observed that the halide creates the secondary structure around trinuclear units (dimer in 1 and trimer in 2) through Hg-X bonding. Two independent types of Hg atoms (four- and five-coordinate in 1) and (three- and four-coordinate in 2) are observed. The geometry around Hg is quite variable with bridging thiolate and both bridging and terminal halides. The angles around Hg associated with the S atoms are more obtuse than expected from mercury(II) thiolates with a coordination number of more than 2. Intermolecular hydrogen bonding involving NH(3)(+), water molecules, and the halide atoms is responsible for the three-dimensional network in both compounds. Relatively short Hg...Hg interactions in 1 (3.797 and 3.776 Angstroms) and in 2 (3.605 and 3.750 Angstroms) are also observed. The compounds have been characterized with the help of (1)H and (13)C NMR, UV-Vis, infrared, Raman, and mass spectrometry, thermogravimetric analysis, and single X-ray crystallography.  相似文献   

5.
A sterically hindered aryl phosphonic acid ArP(O)(OH)2 (2) (Ar = 2,4,6-isopropylphenyl) was synthesized and structurally characterized. ArP(O)(OH)2 forms an interesting hydrogen-bonded corrugated sheet-type supramolecular structure in the solid-state. A three-component reaction involving ArP(O)(OH)2, 3,5-dimethylpyrazole(DMPZH), and Cu(CH3COO)2.H2O produces the tetranuclear Cu(II) compound [Cu4(mu3-OH)2{ArPO2(OH)}2(CH3CO2)2(DMPZH)4][CH3COO]2.CH2Cl2 (3). A similar three-component reaction involving ArP(O)(OH)2, 3,5-dimethylpyrazole, and Zn(CH3COO)2.2H2O yields the tetranuclear Zn(II) compound [Zn4{ArPO3}2{ArPO2(OH)}2{DMPZH}4(DMPZ)2].5MeOH (4). While 3 has been found to have an asymmetric cage structure where two dinuclear copper cores are bridged by bidentate [ArPO2(OH)]- ligands, 4 possesses an open-book tricyclic structure composed of three fused metallophosphonate rings. Magnetic studies on 3 revealed antiferromagnetic behavior.  相似文献   

6.
A series of complexes obtained from the reaction of trans-[(CH3NH2)2PtII] with unsubstituted cytosine (CH) and its anion (C), respectively, has been prepared and isolated or detected in solution: trans-[Pt(CH3NH2)2(CH-N3)Cl]Cl.H2O (1), trans-[Pt(CH3NH2)2(CH-N3)2](ClO4)2 (1a), trans-[Pt(CH3NH2)2(C-N3)2].2H2O (1b), trans-[Pt(CH3NH2)2(CH-N3)2](ClO4)(2).2DMSO (1c), trans-[Pt(CH3NH2)2(CH-N1)2] (NO3)(2).3H2O (2a), trans-[Pt(CH3NH2)2(C-N1)2].2H2O (2b), trans-[Pt(CH3NH2)2(CH-N1)(CH-N3)](ClO4)2 (3a), trans-[Pt(CH3NH2)2(C-N1)(C-N3)] (3b), and trans-[Pt(CH3NH2)2(N1-CN3)(N3-C-N1)Cu(OH)]ClO(4).1.2H2O (4). X-ray crystal structures of all these compounds, except 3a and 3b, are reported. Complex 2a is of particular interest in that it contains the rarer of the two 2-oxo-4-amino tautomer forms of cytosine, namely that with the N3 position protonated. Since the effect of PtII on the geometry of the nucleobase is minimal, bond lengths and angles of CH in 2a reflect, to a first approximation, those of the free rare tautomer. Compared to the preferred 2-oxo-4-amino tautomer (N1 site protonated) of CH, the rare tautomer in 2a differs particularly in internal ring angles (7-11 sigma). Formation of compounds containing the rare CH tautomers on a preparative scale can be achieved by a detour (reaction of PtII with the cytosine anion, followed by cytosine reprotonation) or by linkage isomerization (N3-->N1) under alkaline reaction conditions. Surprisingly, in water and over a wide pH range, N1 linkage isomers (3a, 2a) form in considerably higher amounts than can be expected on the basis of the tautomer equilibrium. This is particularly true for the pH range in which the cytosine is present as a neutral species and implies that complexation of the minor tautomer is considerably promoted. Deprotonation of the rare CH tautomers in 2a occurs with pKa values of 6.07 +/- 0.18 (1 sigma) and 7.09 +/- 0.11 (1 sigma). This value compares with pKa 9.06 +/- 0.09 (1 sigma) (average of both ligands) in 1a.  相似文献   

7.
The synthesis and structures of metal aminocarboxylates prepared in acidic, neutral, or alkaline media have been explored with the purpose of isolating coordination polymers with linear chain and two-dimensional layered structures. Metal glycinates of the formulae [CoCl2(H2O)2(CO2CH2NH3)] (I), [MnCl2(CO2CH2NH3)2] (II), and [Cd3Cl6(CO2CH2NH3)4] (III) with one-dimensional chain structures have been obtained by the reaction of the metal salts with glycine in an acidic medium under hydro/solvothermal conditions. These chain compounds contain glycine in the zwitterionic form. 4-Aminobutyric acid transforms to a cyclic amide under such reaction conditions, and the amide forms a chain compound of the formula [CdBr2(C4H7NO)2] (IV). Glycine in the zwitterionic form also forms a two-dimensional layered compound of the formula [Mn(H2O)2(CO2CH2NH3)2]Br2 (V). 6-Aminocaproic acid under alkaline conditions forms layered compounds with metals at room temperature, the metal being coordinated both by the amino nitrogen and the carboxyl oxygen atoms. Of the two layered compounds [Cd{CO2(CH2)5NH2}2]2 H2O (VI) and [Cu{CO2(CH2)5NH2}2]2 H2O (VII), the latter has voids in which water molecules reside.  相似文献   

8.
Air-stable rhenium(V) nitrido complexes are formed when [ReOCl3(PPh3)2], [NBu4][ReOCl4], or [NBu4][ReNCl4] are treated with an excess of silylated phosphoraneiminates of the composition Me3SiNPPh3 or Ph2P(NSiMe3)CH2PPh2 in CH2Cl2. Complexes of the compositions [ReNCl(Ph2PCH2PPh2NH)2]Cl (1), [ReN(OSiMe3)(Ph2PCH2PPh2NH)2]Cl (2) or [ReNCl2(PPh3)2] (3) were isolated and structurally characterized. The latter compound was also produced during a reaction of the rhenium(III) precursor [ReCl3(PPh3)2(CH3CN)] and Me3SiNPPh3. Nitrogen transfer from the phosphorus to the rhenium atoms and the formation of nitrido ligands were observed in all examples. All products of reactions with an excess of the potentially chelating phosphoraneiminate Me3SiNP(Ph2)CH2PPh2 contain neutral Ph2PCH2PPh2NH ligands. The required protons are supplied by a metal-induced decomposition of the solvent dichloromethane. The Re-N(imine) bond lengths (2.055-2.110 A) indicate single bonds, whereas the N-P bond with lengths between 1.596 A and 1.611 A reflect considerable double bond character. An oxorhenium(V) phosphoraneiminato complex, the dimeric compound [ReOCl2(mu-N-Ph2PCH2PPh2N)]2 (4), is formed during the reaction of [NBu4][ReOCl4] with an equivalent amount of Ph2P(NSiMe3)CH2PPh in dry acetonitrile. The blue neutral complex with two bridging phosphoraneiminato units is stable as a solid and in dry solvents. It decomposes in solution, when traces of water are present. The rhenium-nitrogen distances of 2.028(3) and 2.082(3) A are in the typical range of bridging phosphoraneiminates and an almost symmetric bonding mode. Technetium complexes with phosphoraneimine ligands were isolated from reactions of [NBu4][TcOCl4] with Me3SiNPPh3, and [NBu4][TcNCl4] with Me3SiNP(Ph2)CH2PPh2. Nitrogen transfer and the formation of a five-coordinate nitrido species, [TcNCl2(HNPPh3)2] (5), was observed in the case of the oxo precursor, whereas reduction of the technetium(VI) starting material and the formation of the neutral technetium(V) complex [TcNCl2(Ph2PCH2PPh2NH)] (6) or [TcNCl(Ph2PCH2PPh2NH)2]Cl (7) was observed in the latter case. Both technetium complexes are air stable and X-ray structure determinations show bonding modes of the phosphoraneimines similar to those in the rhenium complexes.  相似文献   

9.
The isomeric ferrocene phosphine-carboxamides, 1-(diphenylphosphino)-1'-{[N-(2-pyridyl)-methyl]carbamoyl}ferrocene (1) and 1-(diphenylphosphino)-1'-{[N-(4-pyridyl)methyl]carbamoyl}ferrocene (2) have been studied as ligands in group-12 metal bromide complexes. The reactions of 1 with CdBr2 x 4H2O and HgBr(2) at 1:1 mole ratio gave the discrete tetracadmium complex [Cd2(micro-Br)2(-1kappa2O,N2)2[micro-1kappa2O,N2:2kappaP-(C5H4N)CH2NHC(O)fcPPh2-CdBr3]2] (7; fc = ferrocene-1,1'-diyl) and the halogeno-bridged dimer [[Hg(micro-Br)Br(-kappaP)]2] (8), respectively. In the presence of acetic acid, the CdBr2-1 system furnished a zwitterionic complex featuring protonated 1 as the P-monodentate donor, [CdBr3[Ph2PfcC(O)NHCH2(C5H4NH)-kappaP]] x H2O (6 x H2O). Under neutral conditions, compound , whose terminal donor groups are better arranged for the formation of extended assemblies, gave rise to one-dimensional coordination polymers [MBr2[micro(P,N)-]](n) (M = Cd, 4; M = Hg, ). The crystal structures of 2 x H2O, its corresponding phosphine oxide (3 x H2O), and complexes 4, 5, 6 x H2O, and have been determined, revealing extensive hydrogen bonding interactions in the solid state.  相似文献   

10.
New methods of preparing tellurium(II) dithiolates, Te(SR)(2), are presented. Te(SCH(2)CH(2)OAc)(2), 1, was made from Te(SCH(2)CH(2)OH)(2) by acetylation of the hydroxyl groups. Te(SCH(2)CH(2)SAc)(2), 2, [Te(SCH(2)CH(2)NH(3))(2)]Cl(2), 3, and Te(SC(6)H(4)(o-NH(2)))(2), 4, were synthesized by ligand exchange reactions of Te(S(t)Bu)(2) with 2 equiv of HSCH(2)CH(2)SAc, [HSCH(2)CH(2)NH(3)]Cl, and HSC(6)H(4)(o-NH(2)), respectively. Of all compounds, 4 exhibits the strongest thermal sensitivity toward decomposition and the largest low-field shift of the (125)Te NMR signal, two features that are attributed to weak Te.N interactions. The structural parameters of the CSTeSC unit exhibit very similar values for all four compounds, while the torsion angles of the side chains differ between the molecules, a feature rationalized by ab initio studies. In the solid state, different kinds of intermolecular aggregation and contacts to the Te atoms are present. 1 and 2 crystallize in the same space group (orthorhombic, Pbcn) and exhibit C(2) symmetric molecules, with two intermolecular Te.S contacts, leading to a trapezoidal coordination mode of the Te atoms. SCCE and C(S)CEC (with E = O, S) torsion angles represent the major differences between 1 and 2, which are attributed to their unlike intermolecular hydrogen bridges. In the solid state structure of 3, [Te(SCH(2)CH(2)NH(3))(2)](2+) cations and Cl(-) anions form a three-dimensional network via N-H...Cl and C-H...Cl hydrogen bonds (triclinic, P(-)1). Two neighboring [Te(SCH(2)CH(2)NH(3))(2)](2+) cations are linked via two Te...S contacts, and each Te atom forms one additional Te...Cl contact, resulting in a slightly distorted trapezoidal coordination mode. In the solid state structure of 4, adjacent molecules form Te...Te and Te...N contacts as well as hydrogen bridges. Two chemically different Te atoms are present, both of which are tetracoordinate with distorted sawhorse configurations. The absence of intramolecular Te...O, Te...S, or Te...N contacts in 1, 2, and 4, respectively, is attributed to the conformational rigidity of the CSTeS unit, where conformation ruling coordination is the case.  相似文献   

11.
The novel complexes [Zn(L)Cl] (1), [Cd(L)Cl] (2), [Hg(L)Cl] (3), {[Hg(L)Cl].NaOH.2H2O} (3.NaOH.2H2O), and {[Hg3(HL)2Cl6].2H2O} (4) (L = -SCH2CH2NH2) were prepared and investigated by means of IR spectroscopy and single-crystal X-ray diffraction. The crystal structures of 1, 2, and 3.NaOH.2H2O show chelating N,S-coordination of the cysteaminate ligand, bridging S, and terminally coordinating Cl. Apart from these common features, the coordination geometries and modes of intermolecular association are different. 1 forms a cyclic tetramer with a Zn4S4 ring, and 3.NaOH.2H2O contains one-dimensional [Hg(L)Cl]n chains with S-bridged Hg atoms. Zn and Hg atoms in 1 and 3.NaOH.2H2O are tetracoordinate with a distorted tetrahedral M(ClNS2) geometry (M = Zn, Hg). Each Cd atom of 2 binds to three S atoms and vice versa, such that layers of distorted Cd3S3 hexagons are formed. 2 is the first example for a compound exhibiting a group 12-group 16 layer structure, which can be described as an analogue of a graphite layer. Additionally, each Cd atom binds to a chlorine atom and a nitrogen atom from a cysteaminate ligand resulting in pentacoordination with a distorted trigonal bipyramidal Cd(ClNS3) geometry. 4 contains two differently coordinate Hg atoms. One displays a distorted trans-octahedral Hg(Cl4S2) geometry, while the other is coordinated by four Cl atoms and one S atom and additionally forms a long Hg...Cl contact.  相似文献   

12.
We present here both an ab initio and quantum mechanical/molecular mechanical (QM/MM) study of the cis-[Pt(NH3)2Cl4] complex reduction by methyl thiolate anion, SCH(-3), which is used as a model of glutathione. Geometry and electronic structure of cis-[Pt(NH3)2Cl4] are determined without and in aqueous medium. The mechanism of the reaction of reduction is characterized. The calculated activation energy of the reaction compares remarkably well with the experimental value.  相似文献   

13.
由[Mo~3(μ~3-O)(μ-S)~3(dtp)~4(H~2O)和PbI~3^-在咪唑存在下反应获得异四核混合簇[Mo~3(PbI~3)S~4(dtp)~3(C~3H~4N~2)~3][(CH~3)~2CO]~2(2)[dtp=S~2P(OC~2H~5)~2^-]。簇合物属斜方晶系,空间群P~b~c~a(No.61),晶胞参数为a=2.3590(3),b=1.9161(5),c=2.6458(9)nm,V=11.959(6)nm^3,Z=8。结构最终偏离因子R=0.067。此四核簇分子具有[Mo~3PbS~4]类立方烷簇芯,簇分子整体对称性接近C~3~v。在同一不对称单元中,簇分子的咪唑环以(NH)和溶剂丙酮分子的氧原子形成O---H---N氢键。  相似文献   

14.
1INTRoDUCTIoNThiomolybdate(thiotungstate)isafundamentalunitoPsomemolybdenumen-zymesandplaysanimportantroleincoordinationchemistryasaligandforothermet-alstoformanalogouscompoundsofmetalloproteinst'3.Recentlyinterestingnonlinearoptical(NLO)propertieshavebeendiscoveredforthetypeofMo(W)-Cu(Ag)-Sclusterst2.33.Bythevarioussyntheticmethodsseveralhundredmixedmetalclustersandcomplexes,Mo(W)-M-S(M=transitionmetal),havebeensynthesizedt'i.AmongthesecompoundsthecasesofMbeingCu,Ag,Feareusualwhile…  相似文献   

15.
Herein we describe the importance of side chains in C3-symmetric ligands in supramolecular chemistry. The reaction of the new ligand tris(5-bromo-2-methoxybenzylidene)triaminoguanidinium chloride [H3Me3Br3L]Cl (1) with ZnCl2 results in the formation of the monomeric complex (Et3NH)2[(ZnCl2)3Me3Br3L] (2), in which the ligand remains in a conformation less favourable for the coordination of metal centres. The use of the related tris(5-bromo-2-hydroxybenzylidene)triaminoguanidinium chloride, [H6Br3L]Cl, under similar conditions, results in the formation of two different dimeric compounds (NH4)[{[Zn(NH3)]3Br3L}2{mu-(OH)}3]1/4MeOH (3) and [Zn{Zn2(OH2)3(NH3)Br3L}2] (4), depending on the solvent mixture used. The comparable reaction of the ligand tris(5-bromo-2-hydroxy-3-methoxybenzylidene)triaminoguanidinium chloride [H6(OMe)3Br3L]Cl (5), leads to the formation of a doughnut-shaped, protein-sized coordination oligomer (Et3NH)18[{Zn[Zn2Cl{(OMe)3Br3L}]2}6(mu-Cl)6(OH2)6]x CH3CN (6), which comprises six dimeric [Zn5{(OMe)3Br3L}2] units. Whereas 3 and 4 decompose in DMSO solution, 6 is surprisingly stable in the same solvent.  相似文献   

16.
A simple synthesis has been devised for the tripodal 3,3,4-tetraamine ligand N{(CH2)3NH2}2{(CH2)4NH2} (L). This ligand forms a copper(II) complex, [Cu (LH)Cl2]ClO4 (7), the structure of which has been determined by X-ray diffraction. The cation contains a five-coordinate copper atom, bonded to two chloride ions, the two propylamine groups and the tertiary nitrogen atom of the ligand; the arrangement is a distorted trigonal bipyramid, in which the two primary amine groups occupy the axial positions. The butylamine group of the ligand does not coordinate to copper but is protonated. It is involved in hydrogen bonding to the perchlorate ion. The e.p.r. spectrum of [Cu(dpt)Cl2] is very similar to that of (7), suggesting that it also has a trigonal bipyramidal structure. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The azadithiolate (SCH2NHCH2S) cofactor proposed to occur in the Fe-only hydrogenases forms efficiently by the condensation of Fe2(SH)2(CO)6 (1), formaldehyde, and ammonia (as (NH4)2CO3). The resulting Fe2[(SCH2)2NH](CO)6 reacts with Et4NCN to give (Et4N)2[Fe2[(SCH2)2NH](CO)4(CN)2], for which crystallographic characterization confirmed an axial N-H and an elongated C-S bond of 1.858(3) A. Primary amines RNH2 (R = Ph, t-Bu) also participate in the condensation reaction, and Fe3S2(CO)9 can be employed in place of 1. Mechanistically, the Fe2[(SCH2)2NH] moiety is shown to arise via two pathways: (i) via the intermediacy of Fe2[(SCH2OH)2](CO)6, which was detected and shown to react with amines, and (ii) via the reaction of 1 with cyclic imines (CH2)3(NR)3 (R = Ph, Me). The reaction of 1 with (CH2)6N4 (hexamethylenetetramine) gives Fe2[(SCH2)2NH](CO)6. Trace amounts of Fe2[(SCH2)2N-t-Bu](CO)6 arise via the reaction of aqueous FeSO4, formaldehyde, NaSH, and t-BuNH2 under an atmosphere of CO.  相似文献   

18.
Four new amine-templated materials, containing two-dimensional lithium beryllofluoride sheets of the stoichiometry [LiBeF(4)](-), have been synthesised under hydrothermal and ambient pressure conditions. [LiBeF(4)][C(6)H(4)(CH(3))CH(2)NH(3)] (1), [LiBeF(4)][C(6)H(4)CH(2)NH(3)Cl] (2), [LiBeF(4)](2)[NH(3)CH(2)CH(2)CH(2)NH(3)] (3), and [LiBeF(4)][C(6)H(5)CH(2)CH(2)CH(2)NH(3)] (4) all contain well-separated anionic sheets containing two different topologies with the 'inter-layer' regions comprising of organoamine templating species. Use of the different organoamine templating agents results in compounds possessing very different relative arrangements of the lithium beryllofluoride sheets. The materials crystallise in P-centred orthorhombic and monoclinic cells; for 1 (templating agent: 3-methylbenzylamine) Pca2(1); for 2 (4-chlorobenzylamine) Pbca; for 3 (1,3-diamminopropane) Pccn, and for 4 (3-phenyl-1-propylamine) P2(1)/c. Hydrogen bonding exists between ions situated on the protonated amine groups on the templating species and electronegative fluoride ions, on MF(4) tetrahedra (where M=Li and Be).  相似文献   

19.
以去叔丁基硫杂杯[4]芳烃与Mn(II)为研究对象,通过改变体系溶剂分别得到了两个四核化合物Mn4(T4A)2 (1)和Mn4(T4A)2(DMF)2(2) (T4A = thiacalix[4]arene)。当反应溶剂为氯仿(CHCl3)和甲醇的混合溶剂时,形成的是以四核锰为结构单元的二维“笼目”(Kagomé)状超分子化合物1,而当反应溶剂为N,N-二甲基甲酰胺(DMF)和甲醇的混合溶剂时,得到的是格子状二维超分子互穿的三维结构化合物2。化合物1具有很大的溶剂占有空隙,是一个潜在的多孔材料,而化合物2是一个紧密堆积的拓展结构。  相似文献   

20.
The synthesis of a range of alkyl/chloro-gallium alkoxide and amido/alkoxide compounds was achieved via a series of protonolysis and alcoholysis steps. The initial reaction involved the synthesis of [Me(Cl)Ga{N(SiMe(3))(2)}](2) (1) via methyl group transfer from the reaction of GaCl(3) with two equivalents of LiN(SiMe(3))(2). Reaction of 1 with varying amounts of ROH resulted in the formation of [Me(Cl)Ga(OR)](2) (2, R = CH(2)CH(2)OMe; 3, CH(CH(3))CH(2)NMe(2)), [Me(Cl)Ga{N(SiMe(3))(2)}(μ(2)-OR)Ga(Cl)Me] (4, R = CH(2)CH(2)NMe(2)), or [MeGa(OR)(2)] (5, R = CH(CH(3))CH(2)NMe(2)). Compound 4 represents an intermediate in the formation of dimeric complexes, of the type [Me(Cl)Ga(OR)](2), when formed from compound [Me(Cl)Ga{N(SiMe(3))(2)}](2). A methylgallium amido/alkoxide complex [MeGa{N(SiMe(3))(2)}(OCH(2)CH(2)OMe)](2) (6) was isolated when 2 was further reacted with LiN(SiMe(3))(2). In addition, reaction of 2 with HO(t)Bu resulted in a simple alcohol/alkoxide exchange and formation of [Me(Cl)Ga(O(t)Bu)](2) (7). In contrast to the formation of 1, the in situ reaction of GaCl(3) with one equivalent of LiN(SiMe(3))(2) yielded [Cl(2)Ga{N(SiMe(3))(2)}](2) in low yield, where no methyl group transfer has occurred. Reaction of alcohol with [Cl(2)Ga{N(SiMe(3))(2)}](2) was then found to yield [Cl(2)Ga(OR)](2) (8, R = CH(2)CH(2)NMe(2)), and further reaction of 8 with LiN(SiMe(3))(2) yielded the gallium amido alkoxide complex, [ClGa{N(SiMe(3))(2)}(OR)](2) (9, R = CH(2)CH(2)NMe(2)), similar to 6. The structures of compounds 4, 5, 7, and 8 have been determined by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号