首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In pursuit of a better understanding of how electronic excitation migrates within complex structures, the concept of resonance energy transfer is being extended and deployed in a wide range of applications. Utilizing knowledge of the quantum interactions that operate in natural photosynthetic systems, wide‐ranging molecular and solid‐state materials are explored in the cause of more efficient solar energy harvesting, while advances in theory are paving the way for the development and application of fundamentally new mechanisms. In this review, an introduction to the underlying processes that cause singlet‐singlet and triplet‐triplet energy transfer leads into a discussion of how a new conception of these fundamental processes has emerged over recent years. Illustrative examples relevant to laser science and photonics are described, including photosynthetic light‐harvesting, light‐activated sensors, processes of cooperative and accretive energy pooling and quantum cutting in rare earth‐doped crystals, and incoherent triplet‐triplet energy upconversion in molecular solutions.  相似文献   

2.
With the aid of density functional theory calculations, we have investigated the mechanism of copper(I)‐catalyzed reaction between unsymmetrical alkyne 1‐phenyl‐1‐butyne and HB(pin). The results of the density functional theory calculations show that the reaction mechanism involves syn‐addition of catalyst ([NHC]CuH) (NHC = N‐heterocyclic carbene) to 1‐phenyl‐1‐butyne to form the alkenyl copper intermediates 2a and 5a , and then intermediates 2a and 5a react with HB(pin) to give intermediates 3 ( 3a , 3b ) and 6 ( 6a , 6b ), and finally elimination of catalyst completes the catalytic cycle and yields the α‐product P1 and β‐product P2 . We found that α‐product should be more favored than β‐product. The calculated results are consistent with the experimental findings. The present paper may provide a useful guide for understanding other analogous copper‐catalyzed hydroboration of unsymmetrical alkynes.  相似文献   

3.
In this work, using density functional theory and time‐dependent density functional theory methods, we theoretically studied the excited‐state behaviors of 3 novel 2‐(2‐hydroxyphenyl)benzothiazole (HBT) derivatives (HBT‐H‐H, HBT‐CN‐H, and HBT‐CN‐CN). Analyses about primary chemical structures such as bond lengths and bond angles, we found that all the intramolecular hydrogen bonds in these 3 structures should be strengthened in the S1 state upon the photoexcitation. Exploring the infrared vibrational spectra at the hydrogen bonds groups, we confirmed that nonsubstitutional HBT‐H‐H structure might play more important roles in the excited‐state intramolecular proton transfer (ESIPT) reaction than HBT‐CN‐H and HBT‐CN‐CN. Further, investigating vertical excitation process, it can be revealed that charge redistribution involved in hydrogen bonding moieties could facilitate the ESIPT reaction. Based on constructing potential energy curves of both S0 and S1 states, we confirmed that the substituents on HBT systems can reasonably regulate and control the ESIPT processes because of the different potential energy barriers. We deem that this present work not only elaborates the different excited‐state behaviors of HBT‐H‐H, HBT‐CN‐H, and HBT‐CN‐CN but also may play important roles in designing and developing new materials and applications involved in HBT systems in future.  相似文献   

4.
The research effort in the area of dusty plasmas initially aimed at avoiding particle formation and controlling the contamination level in industrial reactors. Nowadays, dusty plasmas have grown into a vast field and new applications of plasma‐processed dust particles are emerging. There is demand for particles with special properties, and for particle‐seeded composite materials. Low‐pressure plasmas offer a unique possibility of confinement, control and fine tailoring of particle properties. The role of plasma technology in treatment and surface modification of powder grains is reviewed and illustrated with examples. The interaction between plasma and injected micro‐disperse powder particles can also be used as a diagnostic tool for the study of plasma surface processes.  相似文献   

5.
Scattering characteristics of monolayer and multilayer dielectric periodic structure composed of left-handed materials (LH-DPS) with plane wave arbitrary oblique incidence are carefully analyzed using a method which combines multimode network theory with the rigorous mode matching method. Our analysis results reveal that the arbitrary oblique incident angles and relative position between different LH-DPS have great effects to the scattering characteristics of LH-DPS which different from the situation of dielectric periodic structure composed of right-handed materials (RH-DPS). The reasons why the reflection characteristics of the LH-DPS are totally different from those of the RH-DPS with arbitrary oblique incidence are also given. The present quantitive investigation provides guidelines for the design of the monolayer and multilayer dielectric frequency selective surfaces for millimeter wave applications.  相似文献   

6.
Jun Kang 《中国物理 B》2022,31(10):107105-107105
The growing worldwide energy needs call for developing novel materials for energy applications. Ab initio density functional theory (DFT) calculations allow the understanding and prediction of material properties at the atomic scale, thus, play an important role in energy materials design. Due to the fast progress of computer power and development of calculation methodologies, DFT-based calculations have greatly improved their predictive power, and are now leading to a paradigm shift towards theory-driven materials design. The aim of this perspective is to introduce the advances in DFT calculations which accelerate energy materials design. We first present state-of-the-art DFT methods for accurate simulation of various key properties of energy materials. Then we show examples of how these advances lead to the discovery of new energy materials for photovoltaic, photocatalytic, thermoelectric, and battery applications. The challenges and future research directions in computational design of energy materials are highlighted at the end.  相似文献   

7.
Quantum dot (QD)‐based light‐emitting materials are gaining increased attention because of their easily tunable optical properties desired for various applications in biology, optoelectronics, and photonics. However, few methods can be used to manufacture volumetric materials doped with more than one type of QD other than QD‐polymer hybrids, and they often require complicated preparation processes and are prone to luminescence quenching by QD aggregation and separation from the matrix. Here, simultaneous doping of a volumetric glass‐based nanocomposite with two types of QDs is demonstrated for the first time in a single‐step process using the nanoparticle direct doping method. Glass rods doped with CdTe, CdSe/ZnS, or co‐doped with both QDs, are obtained. Photoluminescence and lifetime experiments confirm temperature‐dependent double emission with maxima at 596 and 720 nm with mean lifetimes up to 16 ns, as well as radiative energy transfer from the short wavelength–emitting QDs to the long wavelength–emitting QDs. This approach may enable the simple and cost‐efficient manufacturing of bulk materials that produce multicolor luminescence with cascade excitation pumping. Applications that could benefit from this include broadband optical fiber amplifiers, backlight systems in LCD screens, high‐power LEDs, or down‐converting solar concentrators used to increase the efficiency of solar panels.  相似文献   

8.
A simple incident circular polarization Raman optical activity (ICP ROA) spectrometer was constructed by applying the method of circularity conversion. The circular polarization of the incident laser light was modulated between right and left by the insertion of a half‐wave plate and not by using a Pockels cell which is usually used in ICP ROA instruments. On the basis of the concept of the virtual enantiomer (Hug, W. Applied Spectroscopy, 2003, 57, 1), circularity converters were inserted in the optical train, which could effectively compensate the systematic offset. The new instrument successfully attained photon shot‐noise‐limited conditions for all bands except for the very strongly polarized Raman band. The ROA spectra of some standard chiral samples were measured to demonstrate the performance of the spectrometer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We theoretically investigate the excited state behaviors of the novel fluorophore tetraphenylethene‐2‐(2′‐hydroxyphenyl)benzothiazole (TPE‐HBT), which was designed based on the intersection of TPE and HBT, using density functional theory and time‐dependent density functional theory methods. Compared with previous experimental results about fluorescence peaks, our calculated results are in good agreement with experimental data, which further confirms that the theoretical level we used is reasonable. Furthermore, our results confirm that the excited state intramolecular proton transfer (ESIPT) process happens upon photoexcitation, which is distinctly monitored by the infrared spectra and the potential energy curves. In addition, the calculation of highest occupied molecular orbital and lowest unoccupied molecular orbital reveals that the electron density change of proton acceptor because of the intramolecular charge transfer (ICT) process in the S1 state induces the ESIPT. Moreover, the transition density matrix is worked out to facilitate deeper insight into the ESIPT coupled ICT process. It is hoped that the present work not only elaborates the ESIPT coupled ICT phenomenon and corresponding mechanisms for the TPE‐HBT but also may be helpful to design and develop new materials and applications involved in TPE‐HBT systems in future.  相似文献   

10.
Abstract

Due to its renewability and biodegradability, biopolymers have developed interest in order to substitute oil-derived plastics. In particular, polylactic acid (PLA) is a promising biopolymer in terms of mechanical and biodegradable properties that is used for different applications. Nevertheless, PLA has some disadvantages like brittleness and processing instability. In order to overcome these drawbacks, it has been blended with natural fibers, leading to a fully biodegradable biocomposite material with enhanced properties. However, blending a hydrophobic biopolymer with hydrophilic fibers leads to poor interfacial adhesion producing interfacial voids, cavities and defects and consequently low performance properties. In this sense, this article reviews different strategies of biopolymer functionalization to improve compatibility in biocomposite materials. First, the effect of different parameters on biopolymers functionalization via melt and reactive extrusion processes is discussed. Finally, coupling efficiency of functionalized biopolymers is analyzed in terms of mechanical and thermal properties.  相似文献   

11.
Three derivatives of alkyl anthracene covalently bonded to aza‐18‐crown‐6 at the nitrogen position, anthracene(CH2)n, (n = 1–3) which act as an on–off fluorogenic photoswitch have been theoretically studied using a computational strategy based on density functional theory at B3LYP/6‐31 + G(d,p) method. The fully optimized geometries have been performed with real frequencies which indicate the minima states. The binding energies, enthalpies and Gibbs free energies have been calculated for aza‐18‐crown‐6 ( L ) and their metal complexes. The natural bond orbital analysis is used to explore the interaction of host–guest molecules. The absorption spectra differences between L and their metal ligands, the excitation energies and absorption wavelength for their excited states have been studied by time‐dependent density functional theory with the basis set 6‐31 + G(d,p). These fluorescent sensors and switchers based on photoinduced electron transfer mechanism have been investigated. The PET process from aza‐crown ether to fluorophore can be suppressed or completely blocked by the entry of alkali metal cations into the aza‐crown ether‐based receptor. Such a suppression of the PET process means that fluorescence intensity is enhanced. The binding selectivity studies of the aza‐crown ether part of L indicate that the presence of the alkali metal cations Li+, Na+ and K+ play an important role in determining the internal charge transfer and the fluorescence properties of the complexes. In addition, the solvent effect has been investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
For calcite (CaCO3), one of the pioneer crystals in nonlinear optics, new results of stimulated Raman scattering (SRS) spectroscopy are presented. Among them are the discovery of a new SRS‐promoting vibration mode with ωSRS2 ≈︁ 282 cm‐1 and its participation, together with the main SRS mode ωSRS1 ≈︁ 1086.5 cm‐1, in cross‐cascaded (χ(3) ↔ χ(3)) nonlinear‐lasing generation, as well as the observation of efficient self‐upconversion via cascaded parametric four‐wave processes of one‐micron Stokes and anti‐Stokes χ(3)‐lasing into the UV‐region of third harmonic generation. The investigations show that calcite is able to generate a χ(3)‐lasing comb of more than two octaves bandwidth. The article also gives a brief review on the discovery and study of the SRS‐effect in natural crystals (minerals), which have expanded our ability to study the photon‐phonon nonlinear‐laser interactions in crystalline materials. A short summary of information about χ(3)‐lasing properties of the triangular planar structure units in SRS‐active crystals is included.  相似文献   

13.
The notions of a virtual process and a virtual quantum, central in current field theories, are usually justified by means of the so-called fourthindeterminacy relation between energy and time. But since the latter formula is meaningless in quantum theory, virtual processes and virtual quanta turn out to be fictions. A number of consequences follow.  相似文献   

14.
《Physics letters. A》2020,384(29):126754
Magnetic anisotropy energy (MAE) plays a key role for 2D magnetic materials, which have attracted significant attention for their promising applications in spintronic devices. Based on first-principles calculations, we have investigated the influence of surface adsorption on the ferromagnetism and MAE of monolayer CrI3. We find that Li adsorption can dramatically enhance its ferromagnetism, and tune its easy magnetization axis to the in-plane direction from original out-of-plane at certain coverage of Li. The monotonic enhancement of in-plane magnetism in CrI3 as the coverage of Li increases are attributed to electrostatic doping induced by charge transfer between Li atoms and I atoms, as supported by the charge doping simulation. The tunable robust magnetic anisotropy may open new promising applications of CrI3–based materials in spintronic devices.  相似文献   

15.
In order to improve hydroperoxide formation from heterocyclic compounds relating to the formation rate and to allow a suitable choice of starting materials for autoxidation, theoretical studies on a set of different amino acid‐derived diketopiperazines and pyrazinoquinazolines were carried out. To estimate their reactivity towards hydroperoxide formation, bond dissociation enthalpies (BDEs) of tertiary α‐C? H bonds as well as reaction enthalpies to the corresponding hydroperoxides were calculated at the B3LYP/TZVP and RMP2/aug‐cc‐pVTZ level of theory. The Evans–Polanyi relation was then used to correlate substrate reactivity with calculated BDEs. Thermal and zero point vibrational energy (ZPE) corrections were determined in the classical harmonic oscillator‐rigid rotor‐particle in a box model. While for the investigated set of diketopiperazines BDEs of 318.8–327.0 kJ mol?1 were found, BDEs for pyrazinoquinazolines spread between 248.4 and 368.4 kJ mol?1 at the B3LYP/TZVP level of theory. A selected subset of heterocycles was converted to the corresponding hydroperoxides and the diketopiperazines were obtained in up to 39% yield after 5–7 days, whereas the pyrazinoquinazoline hydroperoxides were isolated in up to 67% yield after 24 h. Thus, replacing an amido moiety in an N‐aryl‐imino moiety when using pyrazinoquinazolines instead of diketopiperazines leads indeed to an improved captodative stabilization of the radical intermediate. Furthermore the theoretical calculations allowed a distinctive forecast of the preferred regioisomeric hydroperoxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
We present a theoretical investigation about the excited state dynamical mechanism of 2‐(4′‐N,N‐dimethylaminophenyl)‐imidazo[4,5‐c]pyridine (DMAPIP‐c). Within the framework of density functional theory and time‐dependent density functional theory methods, we reasonably repeat the experimental electronic spectra, which further confirm the theoretical level used in this work is feasible. Given the best complex model, 3 methanol (MeOH) solvent molecules should be connected with DMAPIP‐c forming DMAPIP‐c‐MeOH complex in both ground state and excited state. Exploring the changes about bond lengths and bond angles involved in hydrogen bond wires, we find the O7‐H8···N9 one should be largely strengthened in the S1 state, which plays an important role in facilitating the excited state intermolecular proton transfer (ESIPT) process. In addition, the analyses about infrared vibrational spectra also confirm this conclusion. The redistribution about charges distinguished via frontier molecular orbitals based on the photoexcitation, we do find tendency of ESIPT reaction due to the most charges located around N9 atom in the lowest unoccupied molecular orbital. Based on constructing the potential energy curves of both S0 and S1 states, we not only confirm that the ESIPT process should firstly occur along with hydrogen bond wire O7‐H8···N9, but also find a low potential energy barrier 8.898 kcal/mol supports the ESIPT reaction in the S1 state forming DMAPIP‐c‐MeOH‐PT configuration. Subsequently, DMAPIP‐c‐MeOH‐PT could twist its dimethylamino moiety with a lower barrier 3.475 kcal/mol forming DMAPIP‐c‐MeOH‐PT‐TICT structure. Our work not only successfully explains previous experimental work but also paves the way for the further applications about DMAPIP‐c sensor in future.  相似文献   

17.
Photochromic dihydroindolizines (DHIs) 4a,5‐dihydropyrrolo[1,2‐b]pyridazine based tripodal‐linker systems with adamantane core and ethyl benzoate tripods as anchoring groups have been successfully synthesized. In addition, new spirocyclopropene precursors have been prepared through both chemical and photochemical processes. The photochromic properties of the newly synthesized DHIs derivatives have been optimized and fine‐tuned by the incorporation of various substituents on the fluorene (region A) and pyridazine (region C) moieties. Several alternative routes for the synthesis of the DHIs under investigation have been established. The Sonogashira crosscoupling reaction was utilized for fragment coupling between DHIs and the phenylacetylene tether of the adamantane core. Several reaction conditions of this key reaction were surveyed to obtain optimal yields of a new series of coupling products targeted for anchoring to semiconductor nanoparticles. The chemical structures of the newly synthesized materials were elucidated by both analytical and spectroscopic tools. Irradiation of the photochromic DHIs with polychromatic light resulted in ring opened colored betaines which underwent cycloreversion reactions via thermal 1,5‐electrocyclization processes. The kinetic of the thermal 1,5‐electrocyclization was studied by using a UV/VIS/NIR spectrophotometer. The kinetic measurements showed the half‐lives of the colored betaines to be in the second domain. A pronounced increase in the half‐lives of betaines bearing dimethyl‐substituted pyridazine was noted compared with non‐substituted pyridazine betaines. A strong effect of solvent polarity on the λmax and half‐lives of the betaines was observed. The further adjustment of the absorption maxima and the kinetic properties via the manipulation of substituents on the fluorene (region A) and pyridazine moieties (region C) should yield more refined systems for application as supports onto metal‐oxide surfaces which remains an active area of our ongoing research. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
为探究吸附法捕获CO2过程中的微观机理和吸附剂材料间的作用关系,基于密度泛函理论方法,综合比较了典型吸附剂包括煤基官能团、Fe、限域离子液体、Na2CO3、SrTiO3与CO2的吸附过程和差异性.根据不同计算策略,着重分析比较了吸附能、结构优化参数、吸附构型以及原子分布等参数.结果表明,化学吸附中CO2分子与吸附面呈平行关系时通常吸附能最大;在一种材料的同类型官能团中,吸附能大小与氧原子的数量呈正相关关系;吸附过程中C-O键的伸长活化会生成一种重要的中间产物CO2-.提出在探寻CO2吸附材料时可以在含氧原子较多的官能团、活性金属表面等方面进一步探究.最后对基于密度泛函理论的CO2的吸附机理的进一步研究方向进行了展望.  相似文献   

19.
Recent advances in atomically thin two-dimensional (2-D) materials have led to a variety of promising future technologies for post-CMOS nanoelectronics and energy generation. This review is an attempt to thoroughly illustrate the current status and future prospects for 2-D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.), which have already been contemplated for both low-end and high-end technological applications. An overview of the different synthesis techniques for 2-D materials is presented here, with an exploration of the potential for developing methods of controllable large scale synthesis. Furthermore, we summarize the underlying theories which correlate the structural and physical properties of 2-D materials with their state-of-the-art applications. Finally, we show that utilizing the unprecedented properties arising from these materials would lead to innovative devices. Such devices would significantly reduce both device dimensions and power consumption, as necessary for the creation of tomorrow's sustainable technology.  相似文献   

20.
During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam‐position monitor (BPM) to a testing beamline and a single‐grating beamline that enables experiments to record X‐ray photo‐emission spectra (XPS) and X‐ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X‐ray photon energies in the range 300–1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano‐fabrication and topological thin films are increasing. The basic spherical‐grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end‐stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme‐ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L‐edge adsorption spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号