首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of experimental and theoretical studies of the characteristics of shock associated noise from imperfectly expanded supersonic jets over an extensive range of underexpanded and overexpanded operating conditions are described. This kind of broadband noise is believed to be generated by the weak but coherent interaction between the downstream propagating large scale turbulent flow structures in the mixing layer of the jet and the nearly periodic shock cell system. Theoretical reasoning based on this mechanism leads to the scaling formula that the intensity of shock associated noise varies as (Mj2 ? Md2)2 where Mj and Md are the fully expanded jet operating Mach number and nozzle design Mach number, respectively. This formula holds for underexpanded as well as overexpanded jet Mach numbers. In addition, a peak frequency formula is also derived from the same model. The noise intensity, directivity and spectra of supersonic jets from a convergent-divergent nozzle of design Mach number 1·67 were measured in an anechoic facility over the Mach number range of 1·1 to 2·0. The effect of jet temperature was investigated by operating the jet at three temperature conditions. These sets of data provide sufficient information for fully assessing the relative importance and characteristics of shock associated noise of supersonic jets from convergent-divergent nozzles. Comparisons between theoretical results and measurements show very favorable agreement.  相似文献   

2.
Spectral information on the sound radiated from turbulent shock-free jets is now available over a wide range of Strouhal numbers, for jet densities ranging from 0·3 to 2 times the ambient density and jet velocities ranging from 0·3 to 2 times the ambient sound speed. In order to account for some of the trends observed, a jet noise model is developed which takes account of acoustic-mean flow interaction. The model is based on a shear flow analogy, for which the governing equation is Lilley's equation, and numerical solutions are obtained for sources representative of turbulent mixing noise. Analytic solutions developed for low- and high-frequency excitation show good agreement with the numerical results. Finally, the model predictions are compared with measurements on hot and isothermal jets.  相似文献   

3.
An experimental and theoretical investigation of shock-associated noise of inverted-profile coannular jets is described. For a fixed fan-stream Mach number, it is observed that the shock-associated noise often drops suddenly to a minimum as the reservoir pressure of the primary jet increases. When this happens, the almost periodic shock cell structure of the fan stream is found to nearly completely disappear. In this paper, an analytical model of this phenomenon is constructed and studied. It is theoretically established that this sudden change in the shock structure and hence the decrease in shock associated noise would occur when the primary jet flow is just slightly supersonic regardless of the Mach number and temperature of the fan stream. This minimum shock associated noise condition is confirmed in several series of experiments.  相似文献   

4.
An experimental study of jet noise part I: Turbulent mixing noise   总被引:1,自引:0,他引:1  
The characteristics, both spectral and directivity, of turbulent mixing noise in the far field from subsonic and fully-expanded supersonic jet flows have been studied experimentally over an extensive envelope of jet operating conditions (jet exit velocity and temperature). The measurements were conducted in an anechoic room which provides a free-field environment. The results are presented in a systematic manner, and the observed trends and dependencies are discussed in detail. In particular, the changes in detailed jet noise features with varying velocity and exhaust temperature are assessed independently. Empirical prediction schemes or comparisons with recent theoretical investigations are not attempted here. However, the isothermal jet noise results are compared with those predicted by the freely-convecting quadrupole theories (that is, in the absence of any mean flow shrouding effects). The discrepancies between this model and the measurements, many of which have been recently shown to occur due to the presence of mean velocity and temperature gradients surrounding the sources, are obtained accurately over all jet operating conditions of interest.  相似文献   

5.
The reduction of shock-associated noise in inverted-velocity-profile coannular jets is quantified and explained by (1) conducting extensive optical and acoustic measurements for a suitable range of outer and inner stream pressure ratio combinations, and (2) interpreting the measured noise results with the aid of new theoretical models. It is shown that the shock noise from the outer stream is virtually eliminated when the inner stream is operated at a Mach number just above unity, regardless of all the other jet operating parameters. Furthermore, this reduction can be achieved at inverted- as well as normal-velocity-profile conditions.  相似文献   

6.
The basic objective of the work described in this paper is to obtain an understanding of the characteristics of shock associated noise from inverted-profile coannular jets in terms of the properties of the shock cell structure and the jet flow. To achieve this, a first-order shock-cell model is developed. Based on the concept that shock-associated noise is generated by the weak interaction between the large-scale turbulent structures in the mixing layers of the jet and the repetitive shock-cell system, formulae for the peak frequencies as well as noise intensity scaling are derived. The calculated results of these formulae agree very favorably with experimental results.  相似文献   

7.
This is a study of the effect of initial condition on sound generated by vortex pairing in a low Mach number, cold air jet (0·15 ⩽ M ⩽ 0·35). Data has been taken, both flow velocity fields and sound pressure far fields, in a quality anechoic facility, with careful documentation of the effect of initial condition on the sound field of jets of two different geometries (i.e., circular and elliptic). Explanations are presented for most of the observed effects by applying Möhring's theory of vortex sound to vortex filament models of coherent structures in the jets. The explanations also draw upon experience with coherent structure dynamics. The sound source of interest here is that associated with the pairing of shear layer vortices. The evolution of these vortices is greatly affected by the initial condition as is their resultant sound field. The elliptic jets with laminar boundary layers show azimuthal directivity, namely, sound pressure levels in the minor axis plane were greater than in the major axis plane. This difference decreases as the nozzle boundary layer undergoes natural transition with increasing jet speed. When the nozzle boundary layer is tripped, making it fully turbulent and removing the shear layer mode of pairing, the elliptic jet sound fields become nearly axisymmetric. What appears to be the most acoustically active phase of vortex pairing has been modeled, and the resulting sound field calculated for the circular jet. Supporting evidence is found in the experimental data for the validity of this model. The model explains the connection between the initial condition and the far field sound of jets. Interestingly, a general result of Möhring's theory is that motions of vortex rings (of any arbitrary shape) can produce only axisymmetric sound fields if the rings remain in a plane. This implies that the observed asymmetric directivity of the laminar elliptic jet sound field must be due to non-planar ring motions of the vortical structures. The primary contribution of this paper is to examine quantitatively the role of vortex pairing in the production of jet noise; the results are used to reemphasize that “pairing noise” cannot be dominant in most practical jet sound fields, contrary to claims by other researchers.  相似文献   

8.
This study was intended primarily to reveal more information about the noise producing mechanisms of supersonic jets. Two identical, small, cold air, supersonic, overexpanded jets were tested at selected angles, varying from parallel to 90 degrees intersecting, and at various distances apart. Schlieren photographs of the jet structure and far field sound data were obtained. Close spacing of the parallel jets caused acoustic attenuation, which reached a maximum at one diameter centerline spacing, where the sound of two jets nearly equals that of a single jet. In every case the intersecting jets merged into a single supersonic jet.The overall sound power level of intersecting jets is generally higher than that of two independent jets, because of the turbulent mixing of the two jet flows. A maximum level is reached when the jets intersect at a point near the middle of the flow region containing repetitive shocks. For the parallel jets and intersecting jets at large separation, the sound levels are lower in the plane containing the jet centerlines. For intersecting jets at small separation, however, this shielding effect is reversed.  相似文献   

9.
Broadband shock noise reduction in turbulent jets by water injection   总被引:1,自引:0,他引:1  
Max Kandula 《Applied Acoustics》2009,70(7):1009-1014
The concept of effective jet properties introduced by the author (Kandula M. Prediction of turbulent jet mixing noise reduction by water injection. AIAA J 2008;46(11):2714-22) has been extended to the estimation of broadband shock noise reduction by water injection in supersonic jets. Comparison of the predictions with the test data for cold and hot underexpanded supersonic nozzles shows a satisfactory agreement. The results also reveal the range of water mass flow rates over which saturation of mixing noise reduction and existence of parasitic noise are manifest.  相似文献   

10.
We study experimentally how plasma actuators operating on the basis of surface barrier high-frequency discharge affect jet noise characteristics. The results of investigations of air jets (100?C200 m/s) have demonstrated that the studied plasma actuators have control authority over the noise characteristics of these jets. An actuator??s effect on the jet in the applied configuration is related to acoustic discharge excitation and to a large extent is similar to the well-known Vlasov-Ginevsky effect. It has been shown that jet excitation in the case of St ?? 0.5 using the barrier-discharge plasma actuator leads to broadband amplification of jet sound radiation. The jet excitation in the case of St > 2 leads to broadband noise reduction if the action is sufficiently intensive.  相似文献   

11.
Numerical simulations of sound radiation from perturbed round jets are used, firstly to explore the structure of the sound sources and then to carry out a parametric study of the effect of jet Mach number and jet temperature. The simplified model problem includes a steady base jet flow, maintained in the absence of disturbances, superimposed with instability waves that are free to interact nonlinearly. Simulations over a range of subsonic jet Mach numbers show that a nonlinear mechanism dominates over a linear mechanism for low-frequency sound radiation, while for supersonic Mach numbers the linear mechanism is dominant. Additional insight is gained from a frequency-wavenumber analysis, including a transformation in the radial direction. With this decomposition, the acoustic field is located by the arc of a circle in plots of radial against streamwise wavenumber for discrete frequencies. The transformation is applied to both the pressure field, showing the sound directivity, and to selected source terms, showing characteristic directivity patterns for the streamwise and radial quadrupole terms. Decreasing the Mach number leads to a reduction in amplitude of the sources and of the sound radiation. Simulations with broadband forcing show that the qualitative effects of Mach number and jet heating are captured by this approach, which requires less resolution than a direct numerical simulation. A significant increase in the strength of the acoustic radiation for cold jets is observed, which is worthy of further investigation.  相似文献   

12.
Techniques in which a shock tube is used to produce short duration jets are discussed briefly. The method adopted involves using the shock tube as a static reservoir with the jet exhausting through a nozzle originally closed by a diaphragm. Short duration noise samples of a Mach 0·9 air jet are recorded digitally and narrow band and one-third octave spectra are evaluated. Average spectra from a number of samples are presented. Comparison with both digital and analogue spectra from the equivalent continuous jet demonstrates that it is possible to obtain meaningful spectra by averaging short duration samples of impulsively started jets. The technique is therefore suitable for the relatively cheap exploration of the noise field of jets of a wide variety of gases.  相似文献   

13.
In recent years researchers in jet turbulence and jet noise have become increasingly interested in what is termed “large scale coherent jet structures”. There is now considerable evidence that azimuthally coherent structures can be generated by acoustically forcing a jet from upstream. However, the evidence for such structures in unforced jets, except close to the nozzle at low Reynolds numbers, is, at best, circumstantial. The role of such structures in subsonic jet noise production is also completely unproven. In an attempt to establish a link between azimuthally coherent structures and the jet noise field a number of experimenters have recently made azimuthal cross-correlation measurements of either the near field pressure or far field noise, and used the observed coherence to infer the existence of an azimuthally coherent source field. The term azimuthally coherent is used here to infer that the source region is dominated by low order azimuthal components, with relatively little contribution coming from the higher azimuthal components. The purpose of this paper is to question the interpretation of that data. Specifically the sound field generated by a simple ring source with various types of azimuthal coherence is considered theoretically. It is shown that the azimuthal coherence of both the near and far field pressures is principally a function of the Helmholtz number and in many cases of practical interest is relatively insensitive to any coherent structure of the source.  相似文献   

14.
矩形喷口欠膨胀超声速射流对撞的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
张强  陈鑫  何立明  荣康 《物理学报》2013,62(8):84706-084706
在不同喷口间距和射流压力下开展了矩形喷口欠膨胀超声速射流对撞实验并与自由射流进行了对比. 实验表明:超声速射流对撞的辐射噪声中存在四种不同的啸音模式, 且随喷口距离和射流压力的变化在不同模式间切换. 在射流压力大于0.5 MPa且喷口间距小于50 mm时, 射流对撞面在两个喷口外形成两道正激波之间, 啸音基频维持在3 kHz左右. 随喷口间距的增大或射流压力的降低, 射流对撞面在一侧喷口外的弓形激波与另一侧喷口外的正激波之间. 对撞面也有可能出现在两个弓形激波之间, 对应的啸音基频约为9 kHz, 但容易受扰动而回到喷口一侧或是在喷口之间大幅度振荡. 当射流压力小于0.36 MPa且喷口间距大于70 mm后, 对撞面在两个喷口之间大幅度振荡, 产生基频在1 kHz左右并随射流压力的降低和喷口间距的增大而降低的啸音. 关键词: 超声速射流 啸音 射流对撞 激波  相似文献   

15.
It has been found experimentally that broad band jet noise can be amplified by a pure tone excitation as much as 6 to 7 dB. The jet noise amplification effect takes place at sound pressure levels which are present in real aircraft engines. The experimental investigation was restricted to a cold jet at high subsonic Mach numbers excited by a plane sound wave coming from inside the nozzle. Based on a simplified mathematical model an attenuator has been constructed which is able to reduce the jet noise amplification significantly.  相似文献   

16.
We report an experimental study of ignition of flammable mixtures by highly unexpanded, supersonic hot jets. The high-pressure, hot-gas reservoir supplying the jet is created by impacting a projectile on a plunger to rapidly compress and ignite a rich n-hexane/air mixture, resulting in a peak reservoir pressure of more than 20 MPa. A locking mechanism was used to prevent the plunger from rebounding and the jet was created by rupturing a diaphragm covering a nozzle with an exit diameter between 0.25 and 1 mm. The jet development and ignition processes in the main chamber filled with hexane-air mixture were visualized using high-speed schlieren and OH* chemiluminescence imaging. The ignition threshold was determined as a function of composition in the jet and main chamber, the nozzle diameter, and the initial pressure in the main chamber. Unlike the case of subsonic jets in which ignition occurs at the shear layer near the nozzle exit, ignition of combustion in the main chamber was found to take place downstream of the Mach disk terminating the supersonic expansion and within the turbulent mixing region created by the startup of the supersonic jet. The results are interpreted using a constant-pressure, well-stirred reactor model simulating the mixing between the hot jet and cold ambient gas. The critical conditions for ignition are determined by the competition between energy release due to chemical reactions initiated by the hot jet gas and cooling due to mixing with the cold chamber atmosphere. The critical value (maximum for which ignition occurs) of the mixing rate was computed using a detailed chemical reaction model and found to be a useful qualitative guide to our observations.  相似文献   

17.
Continuous high-speed water jets are presently used in many industrial applications such as cutting of various materials, cleaning and removal of surface layers. However, there is still a need for further research to enhance the performance of pure water jets. An obvious method is to generate water jets at ultra-high pressures (currently up to 700 MPa). An alternate approach is to eliminate the need for such high pressures by pulsing of the jet. This follows from the fact that the impact pressure on a target generated by a slug of water is considerably higher than the stagnation pressure of a corresponding continuous jet. Ultrasonically forced modulation of a continuous stream of water represents the most promising method of pulsed jet generation because of its simplicity and practicality. A pulsed jet is generated by modulating a continuous stream of water by ultrasonic waves. A velocity transformer connected to a piezoelectric transducer is located axially inside a nozzle to induce longitudinal pulsations in the water. An extensive laboratory research program is in progress to understand the basic principles of the process and to optimize the nozzle design for several applications. The results reported in this paper show that the performance of such a pulsed jet is far superior to that of a continuous jet operating at the same parameters. Experimental results obtained with the ultrasonic vibration of a tip situated inside the nozzle indicate that using this technique one can achieve performance of the jet even order of magnitude higher in comparison to continuous jet at the same hydraulic parameters. Performance of ultrasonically modulated jets in cutting of various materials was tested in laboratory conditions. In this paper, results of measurement of dynamic pressure in the nozzle and force effects of modulated jets are presented together with results obtained in cutting of various materials using ultrasonically modulated water jets. The results are compared with those obtained with continuous jets at the same operating parameters. Potential of forced modulation of the jet in applications of cleaning, paint and coating removal from surfaces and concrete cutting in the process of repair of concrete structures is mentioned.  相似文献   

18.
An experimental investigation of noise generation by instabilities in low Reynolds number supersonic air jets has been performed. Sound pressure levels, spectra and acoustic phase fronts were measured with a traversing condenser microphone in the acoustic field of axisymmetric, perfectly expanded, cold jets of Mach numbers 1·4, 2·1 and 2·5. Low Reynolds numbers in the range from Re = 3700 to Re = 8700 were obtained by exhausting the jets into an anechoic vacuum chamber test facility. This contrasts with Reynolds numbers of over 106 for similar jets exhausting into atmospheric pressure. The flow fluctuations of the instability in all three jets have been measured with a hot-wire and the results are documented in a previous paper by Morrison and McLaughlin. Acoustic measurements show that the major portion of the sound radiated by all three jets is produced by the instability's rapid growth and decay that occurs near the end of the potential core. This takes place over a relatively short distance (less than two wavelengths of the instability) in the jet. In the lower two Mach number jets the instability has a phase velocity less than the ambient acoustic velocity. In the Mach number 2·5 jet the instability phase speed is 1·11 times the ambient acoustic velocity. In this case the acoustic phase fronts indicate the possibility of a Mach wave component. It was also determined that low level excitation at the dominant frequency of the instability actually decreased the radiated noise by suppressing the broad band component.  相似文献   

19.
The noise of a single-stream circular jet and that of a coaxial jet with coplanar nozzles of 2·5 area ratio have been measured under simulated flight conditions in the RAE 24 ft wind-tunnel. The majority of tests were conducted with the single-stream jet and primary section of the coaxial jet at a nominal temperature of 880 K. The data have been used to quantify the effect of jet temperature and were combined with measurements from an earlier test series to establish a prediction method for the effect of flight on the noise of single-stream subsonic jets. This method is based on jet noise theory modified by experimentally derived constants. For coaxial jets it is concluded that the noise reductions, which are independent of the secondary stream velocity, are predicted to an acceptable degree by the method suggested for unheated single-stream jets. The prediction methods are suitable for both OASPL's and spectra.  相似文献   

20.
A thorough experimental study of the noise characteristics of twin jets is presented in this paper. Twin round jets are investigated at typical jet engine conditions: that is, with heated high velocity flow. By varying the nozzle to nozzle spacing, it is possible to discriminate between the effects of turbulent mixing and acoustic shielding. As a result of this investigation, it was established that the turbulent mixing effects (both interaction noise generation and mixing suppression) occur for closely spaced nozzles. While acoustic shielding occurs at all nozzle spacings, it plays the dominant role at wide nozzle spacings. The levels of this acoustic shielding afforded by an adjacent jet can be sufficient to cause a nearly complete masking of the noise of the shielded jet. A significant discovery of this investigation was the importance of the layer of cooler, slower moving ambient air that exists between the twin jet plumes. This inter-jet layer causes acoustic refraction and reflection, and as the nozzle separation increases, the layer extends to shield more of the jet noise sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号