首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analytical method using transfer function or impulse response is very effective for analyzing non-linear systems with localized non-linearities. This is because the number of non-linear equations can be reduced to that of the equations with respect to points connected with the non-linear element. In the present paper, analytical method for the steady state vibration of non-linear system including subharmonic vibration is proposed by utilizing convolution integral and the impulse response. The Galerkin method is introduced to solve the non-linear equations formulated by the convolution integral, and then the steady state vibration is obtained. An advantage of the present method is that stability or instability of the steady state vibration can be discriminated by the transient analysis from convolution integral. The three-degree-of-freedom mass-spring system is shown as a numerical example and the proposed method is verified by comparing with the result by Runge-Kutta-Gill method.  相似文献   

2.
Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur’e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.  相似文献   

3.
The planar equations of motion for a tapered fly line subjected to tension, bending, aerodynamic drag, and weight are derived. The resulting theory describes the large non-linear deformation of the line as it forms a propagating loop during fly casting. A cast is initiated by the motion of the tip of the fly rod that represents the boundary condition at one end of the fly line. At the opposite end, the boundary condition describes the equations of motion of a small attached fly (point mass with air drag). An efficient numerical algorithm is reviewed that captures the initiation and propagation of a non-linear wave that describes the loop. The algorithm is composed of three major steps. First, the non-linear initial-boundary-value problem is transformed into a two-point boundary-value problem, using finite differencing in time. The resulting non-linear boundary-value problem is linearized and then transformed into an initial-value problem in space. Example results are provided that illustrate how an overhead cast develops from initial conditions describing a perfectly laid out back cast. The numerical solutions are used to explore the influence of two sample effects in fly casting, namely, the drag created by the attached fly and the shape of the rod tip path.  相似文献   

4.
An analytical method is presented for evaluation of the steady state periodic behavior of non-linear systems. This method is based on the substructure synthesis formulation and a multiple scales procedure, which is applied to the analysis of non-linear responses. A complex non-linear system is divided into substructures, of which equations are approximately transformed to modal co-ordinates including non-linear term under the reasonable procedure. Then, the equations are synthesized into the overall system and the solution of the non-linear system can be obtained. Based on the method of multiple scales, the proposed procedure reduces the size of large-degree-of-freedom problem in solving the non-linear equations. Feasibility and advantages of the proposed method are illustrated by the application of the analytic procedure to the non-linear rotating machine system as a large mechanical structure system. Results obtained are reported to be an efficient approach with respect to non-linear response prediction when compared with other conventional methods.  相似文献   

5.
6.
In this paper, the incremental finite element equations for geometric non-linear analysis of piezoelectric smart structures are developed using a total Lagrange approach by using virtual velocity incremental variational principles. A four-node first order shear plate element model with reduced and selective integration is also developed. Geometrically non-linear transient vibration response and control of plates with piezoelectric patches subjected to pulse loads are investigated. Active damping is introduced on the plates by coupling a self-sensing and negative velocity feedback algorithm in a closed control loop. The numerical results show that piezoelectric actuators can introduce significant damping and suppress transient vibration effectively. The effects of the number and locations of the piezoelectric actuators on the control system are also discussed.  相似文献   

7.
Industrial structure systems may have non-linearity, and are also sometimes exposed to the danger of earthquake. In the design of such system, these factors should be accounted for from the viewpoint of reliability. This paper proposes a method to analyze seismic response and reliability design of a complex non-linear structure system under random excitation. The actual random excitation is represented to the corresponding Gaussian process for the statistical analysis. Then, the non-linear system is subjected to this random process. The non-linear structure system is modelled by substructure synthesis method (SSM) procedure. The non-linear equations are expanded sequentially. Then, the perturbed equations are solved in probabilistic method. Several statistical properties of a random process that are of interest in random vibration applications are reviewed in accordance with the non-linear stochastic problem. The system performance condition in the design of system is that responses caused by random excitation be limited within safe bounds. Thus, the reliability of the system is considered according to the crossing theory. Comparing with the results of the numerical simulation proved the efficiency of the proposed method.  相似文献   

8.
The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of some of the lowest natural frequencies is investigated. Donnell's non-linear shallow-shell theory is used and the solution is obtained by the Galerkin method. Several expansions involving 16 or more natural modes of the shell are used. The boundary conditions on the radial displacement and the continuity of circumferential displacement are exactly satisfied. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The non-linear equations of motion are studied by using a code based on the arclength continuation method. A series of accurate experiments on forced vibrations of an empty and water-filled stainless-steel shell have been performed. Several modes have been intensively investigated for different vibration amplitudes. A closed loop control of the force excitation has been used. The actual geometry of the test shell has been measured and the geometric imperfections have been introduced in the theoretical model. Several interesting non-linear phenomena have been experimentally observed and numerically reproduced, such as softening-type non-linearity, different types of travelling wave response in the proximity of resonances, interaction among modes with different numbers of circumferential waves and amplitude-modulated response. For all the modes investigated, the theoretical and experimental results are in strong agreement.  相似文献   

9.
This article scrutinizes the features of viscous dissipation in the stagnation point flow past through a linearly stretched Riga wall by implementing Cattaneo-Christov heat flux model. Viscous dissipation is carried out in Cattaneo-Christov diffusion analysis for the first time in this letter. As a result of Cattaneo-Christov model, some extra terms of viscous dissipation are appeared in the energy equation. These extra terms of viscous dissipation are missing in the literature. On the utilization of suitable transformations, the equations governing the problem are reduced under the boundary layer approximation into the non-linear and dimensionless ordinary differential equations. Convergent approach is utilized to solve the dimensionless governing equations. The solution thus acquired is used to highlight the effects of emerging parameters on velocity distribution and fluid's temperature through the graphs. Features of the drag force (or skin friction co-efficient) are graphically interpreted. It is noticed that the presence of modified Hartman number helps to reduce the fluid's temperature but enhances the velocity profile. Further an enlargement in the value of thermal time relaxation parameter helps to decrease the temperature distribution.  相似文献   

10.
This paper deals with the approximate analysis of non-linear non-conservative systems of two degrees of freedom subjected to transient excitations. By using a transformation of the co-ordinates, the governing differential equations of the system are brought into a form to which the method of averaging of Krylov and Bogoliubov can be applied. The response of a representative spring-mass-damper system to typical pulses like a blast pulse and a half sinusoidal pulse is determined. The validity of the approach is demonstrated by comparison of the approximate solutions with numerical results obtained on a digital computer.  相似文献   

11.
Based on the dynamic equations of nonlinear large deflection of axisymmetric shallow shells of revolution, the nonlinear free vibration and forced vibration of a corrugated shallow shell under concentrated load acting at the center have been investigated. The nonlinear partial differential equations of shallow shell were reduced to the nonlinear integral-differential equations by using the method of Green’s function. To solve the integral-differential equations, the expansion method was used to obtain Green’s function. Then the integral-differential equations were reduced to the form with a degenerate core by expanding Green’s function as a series of characteristic function. Therefore, the integral-differential equations became nonlinear ordinary differential equations with regard to time. The amplitude-frequency relation, with respect to the natural frequency of the lowest order and the amplitude-frequency response under harmonic force, were obtained by considering single mode vibration. As a numerical example, nonlinear free and forced vibration phenomena of shallow spherical shells with sinusoidal corrugation were studied. The obtained solutions are available for reference to the design of corrugated shells.  相似文献   

12.
The optimal design of beams in torsion under harmonically varying torques is discussed. The analysis covers the cases when the excitation frequency is either less than or greater than the fundamental frequency of the beam. The beams analyzed are in the main assumed to have rectangular cross-section but the theory is easily extended to other section shapes. In each case the problem is stated in variational form with the introduction of constraints through Lagrange multipliers. The mathematical analysis of the various problems presented results in a system of non-linear differential equations with associated boundary conditions. The solutions given for some of the cases provide expressions for the design variable and the response, along the length of the beam, in terms of the forcing frequency and some constants which can be determined for the particular problem. The computed results and data are given in tabular form and some optimum profiles are shown graphically.  相似文献   

13.
The second order non-linear equations of motion are formulated for spinning line elements having little or no intrinsic structural stiffness. The derivation is based on the extended Hamilton's principle and includes the effect of initial geometric imperfections (axial, curvature, and twist) on the line element dynamics. For comparison with previous work, the non-linear equations are reduced to a linearized form frequently found in the literature. The comparison revealed several new spin-stiffening terms that have not been previously identified and/or retained. They combine geometric imperfections, rotary inertia, Coriolis, and gyroscopic terms.  相似文献   

14.
The non-linear dynamic behaviour of infinitely long circular cylindrical shells in the case of plane strains is examined and results are compared with previous studies. A theoretical model based on Hamilton's principle and spectral analysis previously developed for non-linear vibration of thin straight structures (beams and plates) is extended here to shell-type structures, reducing the large-amplitude free vibration problem to the solution of a set of non-linear algebraic equations. In the present work, the transverse displacement is assumed to be harmonic and is expanded in the form of a finite series of functions corresponding to the constrained vibrations, which exclude the axisymmetric displacements. The non-linear strain energy is expressed by taking into account the non-linear terms due to the considerable stretching of the shell middle surface induced by large deflections. It has been shown that the model presented here gives new results for infinitely long circular cylindrical shells and can lead to a good approximation for determining the fundamental longitudinal mode shape and the associated higher circumferencial mode shapes (n>3) of simply supported circular cylindrical shells of finite length. The non-linear results at small vibration amplitudes are compared with linear experimental and theoretical results obtained by several authors for simply supported shells. Numerical results (non-linear frequencies, vibration amplitudes and basic function contributions) of infinite shells associated to the first four mode shapes of free vibrations, are obtained, using a multi-mode approach and are summarized in tables. Good agreement is found with results from previous studies for both small and large amplitudes of vibration. The non-linear mode shapes are plotted and discussed for different thickness to radius ratios. The distributions of the bending stresses associated with the mode shapes are given and compared with those obtained via the linear theory.  相似文献   

15.
The steady state response of a single large capacity railroad freight vehicle is presented. The vehicle is described through an appropriate multi-degree of freedom non-linear mathematical model. The equations of motion of the system are derived by using Lagrange's procedure. The analog computer is employed for solving the non-linear differential equations of motion for obtaining the system's rocking response in the time domain. The vehicle steady state frequency response is derived from a sequence of time responses. By utilizing the frequency response plots a complete study of the system sensitivity to variation in the suspension parameters is carried out. The study shows that a possible practical solution to the freight car rocking problem can be achieved by using additional stabilizing devices consisting of friction and viscous dampers.  相似文献   

16.
This paper considers an accepted model of the metal cutting process dynamics in the context of an approximate analysis of the resulting non-linear differential equations of motion. The process model is based upon the established mechanics of orthogonal cutting and results in a pair of non-linear ordinary differential equations which are then restated in a form suitable for approximate analytical solution. The chosen solution technique is the perturbation method of multiple time scales and approximate closed-form solutions are generated for the most important non-resonant case. Numerical data are then substituted into the analytical solutions and key results are obtained and presented. Some comparisons between the exact numerical calculations for the forces involved and their reduced and simplified analytical counterparts are given. It is shown that there is almost no discernible difference between the two thus confirming the validity of the excitation functions adopted in the analysis for the data sets used, these being chosen to represent a real orthogonal cutting process. In an attempt to provide guidance for the selection of technological parameters for the avoidance of primary chatter, this paper determines for the first time the stability regions in terms of the depth of cut and the cutting speed co-ordinates.  相似文献   

17.
杨旭东  乔志德  朱兵 《计算物理》2003,20(3):233-238
基于共轭方程的优化设计理论,应用三维欧拉方程进行了升力系数不变时跨音速机翼阻力优化设计研究,根据给定的目标函数推导了在物理空间上表述的共轭方程及边界条件,研究了共轭方程的数值求解方法及目标函数对设计变量的敏感性导数求解问题,发展了一种跨音速机翼阻力优化设计方法,应用该设计方法进行了跨音速机翼阻力优化设计研究,优化后机翼表面的激波强度减弱很多,有效减少了波阻.  相似文献   

18.
The similarity solution for the steady two-dimensional flow of an incompressible viscous and electrically conducting fluid over a non-linearly semi-infinite stretching sheet in the presence of a chemical reaction and under the influence of a magnetic field gives a system of non-linear ordinary differential equations. These non-linear differential equations are analytically solved by applying a newly developed method, namely the Homotopy Analysis Method (HAM). The analytic solutions of the system of non-linear differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. Graphical results are presented to investigate the influence of the Schmidt number, magnetic parameter and chemical reaction parameter on the velocity and concentration fields. It is noted that the behavior of the HAM solution for concentration profiles is in good agreement with the numerical solution given in reference [A. Raptis, C. Perdikis, Int. J. Nonlinear Mech. 41, 527 (2006)].   相似文献   

19.
The classical moving co-ordinate frame approach and Hamilton's principle are employed to derive a distributed-parameter mathematical model to investigate the dynamic behaviour of deep mine hoisting cables. This model describes the coupled lateral-longitudinal dynamic response of the cables in terms of non-linear partial differential equations that accommodate the non-stationary nature of the system. Subsequently, the Rayleigh-Ritz procedure is applied to formulate a discrete mathematical model. Consequently, a system of non-linear non-stationary coupled second order ordinary differential equations arises to govern the temporal behaviour of the cable system. This discrete model with quadratic and cubic non-linear terms describes the modal interactions between lateral oscillations of the catenary cable and longitudinal oscillations of the vertical rope. It is shown that the response of the catenary-vertical rope system may feature a number of resonance phenomena, including external, parametric and autoparametric resonances. The parameters of a typical deep mine winder are used to identify the depth locations of the resonance regions during the ascending cycles with various winding velocities.  相似文献   

20.
This paper presents a theoretical analysis of vibration control technology of wind turbine blades made of piezoelectric intelligent structures. The design of the blade structure, which is made from piezoelectric material, is approximately equivalent to a flat shell structure. The differential equations of piezoelectric shallow shells for vibration control are derived based on piezoelectric laminated shell theory. On this basis, wind turbine blades are simplified as elastic piezoelectric laminated shells. We establish the electromechanical coupling system dynamic model of intelligent structures and the dynamic equation of composite piezoelectric flat shell structures by analyzing simulations of active vibration control. Simulation results show that, under wind load, blade vibration is reduced upon applying the control voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号