首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).  相似文献   

2.
Magnesium dications bind strongly to a tridentate anionic dicarbene ligand L = [N{CH(2)CH(2)(CNCHCHNMes)}(2)] forming dinuclear and trinuclear Mg complexes with some particularly short Mg-C bonds. Treatment of the proligand H(4)LCl(3) with three equivalents of methyl magnesium chloride or benzyl magnesium chloride affords Mg(3)(HL)Cl(6) in high yield. A suspension of in thf was heated to 80 degrees C for 2 h to afford Mg(2)(L)Cl(3), consistent with the loss of one equivalent of MgCl(2), and the deprotonation of the remaining acidic NH, lost as HCl gas. Treatment of Mg(3)(HL)Cl(6) with one equivalent of KC(8) results in deprotonation of the ligand amine NH to afford Mg(3)(L)Cl(5); treatment with a second equivalent forms the radical anion of the complex, K[Mg(3)(L)Cl(5)], which decomposes upon storage, precluding its structural characterisation. The acidic NH proton of the ligand in Mg(3)(HL)Cl(6) can also be removed by deprotonation with Li{N(SiMe(3))(2)}; additional equivalents of which also exchange the magnesium-bound chlorides for silylamido ligands, affording Mg(2)(L)Cl(2)N' and Mg(2)(L)Cl(N')(2), which have both been characterised by single-crystal X-ray diffraction studies.  相似文献   

3.
The reactions of [[M(mu-OMe)(cod)](2)] (M = Rh, Ir; cod = 1,5- cyclooctadiene) with p-tolylamine, alpha-naphthylamine, and p-nitroaniline gave complexes with mixed-bridging ligands, [[M(cod)](2)(mu-NHAr)(mu-OMe)]. Similarly, the related complexes [[Rh(cod)](2)(mu-NHAr)(mu-OH)] were prepared from the reactions of [[Rh(mu-OH)(cod)](2)] with p-tolylamine, alpha-naphthylamine, and p-nitroaniline. The reactions of [[Rh(mu-OR)(cod)](2)] (R = H, Me) with o-nitroaniline gave the mononuclear complex [Rh(o-NO(2)C(6)H(4)NH)(cod)]. The syntheses of the amido complexes involve a proton exchange reaction from the amines to the methoxo or hydroxo ligands and the coordination of the amide ligand. These reactions were found to be reversible for the dinuclear complexes. The structure of [[Rh(cod)](2)(mu-NH[p-NO(2)C(6)H(4)])(mu-OMe)] shows two edge-shared square-planar rhodium centers folded at the edge with an anti configuration of the bridging ligands. The complex [[Rh(cod)](2)(mu-NH[alpha-naphthyl])(mu-OH)] cocrystallizes with [[Rh(mu-OH)(cod)](2)] and THF, forming a supramolecular aggregate supported by five hydrogen bridges in the solid state. In the mononuclear [Rh(o-NO(2)C(6)H(4)NH)(cod)] complex the o-nitroamido ligand chelates the rhodium center through the amido nitrogen and an oxygen of the nitro group.  相似文献   

4.
Several tellurometalates of the general formula [MTe(7)](n)()(-) (n = 2, 3) have been isolated as salts of organic cations by reaction of suitable metal sources with polytelluride solutions in DMF. The [HgTe(7)](2)(-) anion has the same structure in both the NEt(4)(+) and the PPh(4)(+) salts except for a minor change in the ligand conformation. The [AgTe(7)](3)(-) and [HgTe(7)](2)(-) anions contain metal atoms coordinated in trigonal-planar fashion to eta(3)-Te(7)(4)(-) ligands. The central Te atom of an eta(3)-Te(7)(4)(-) ligand is coordinated to the metal atom and to two Te atoms in a "T"-shaped geometry consistent with a hypervalent 10 e(-) center. The planar [AuTe(7)](3)(-) anion may best be described as possessing a square-planar Au(III) atom coordinated to an eta(3)-Te(5)(4)(-) ligand and to an eta(1)-Te(2)(2)(-) ligand. The reaction of [NEt(4)](n)()[MTe(7)] (M = Hg, n = 2; M = Au, n = 3) with the activated acetylene dimethyl acetylenedicarboxylate (DMAD) has yielded the products [NEt(4)](n)()[M(Te(2)C(2)(COOCH(3))(2))(2)] (M = Hg, n = 2; M = Au, n = 1). The metal atoms are coordinated to two Te(COOCH(3))C=C(COOCH(3))Te(2)(-) ligands, for M = Hg in a distorted tetrahedral fashion and for M = Au in a square-planar fashion.  相似文献   

5.
Kui SC  Li HW  Lee HK 《Inorganic chemistry》2003,42(9):2824-2826
Homoleptic Ce(III) and Nd(III) triamides [LnL(3)] [Ln = Ce(1) or Nd(2)] and the heterobimetallic amide-alkoxide derivatives [LnL(2)(mu-OBu(t))2M(tmeda)] [Ln = Ce, M = Na (3); Ln = Nd, M = Na (4); Ln = Nd, M = K (5)] supported by the bulky [N(SiBu(t)Me2)(2-C(5)H(3)N-6-Me)]- ligand (L-) have been successfully synthesized and characterized. Complexes 1-3 and 5 show a high activity toward the ring-opening polymerization of epsilon-caprolactone.  相似文献   

6.
Following a bottom-up approach to nanomaterials, we present a rational synthetic route to high-spin and anisotropic molecules based on hexacyanometalate [M(CN)(6)](3-) cores. Part 1 of this series was devoted to isotropic heptanuclear clusters; herein, we discuss the nuclearity and the structural anisotropy of nickel(II) derivatives. By changing either the stoichiometry, the nature of the terminal ligand, or the counterion, it is possible to tune the nuclearity of the polynuclear compounds and therefore to control the structural anisotropy. We present the synthesis and the characterisation by mass spectrometry, X-ray crystallography and magnetic susceptibility of bi-, tri-, tetra-, hexa- and heptanuclear species [M(CN)(n)(CN-M'L)(6-n)](m+) (with n=0-5; M=Cr(III), Co(III), M'=Ni(II); L=pentadentate ligand). Thus, with M=Cr(III), d(3), S=3/2, a dinuclear complex [Cr(III)(CN)(5)(CN-NiL(n))](9+), (L(n)=polydentate ligand) was built and characterised, showing a spin ground state, S(G)=5/2, with a ferromagnetic interaction J(Cr,Cu)=+18.5 cm(-1). With M=Co(III) (d(6), S=0) were built di-, tri-, tetra-, hexa and hepanuclear CoNi species: CoNi, CoNi(2), CoNi(3), CoNi(5) and CoNi(6). By a first approximation, they behave as one, two, three, five and six isolated nickel(II) complexes, respectively, but more accurate studies allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.  相似文献   

7.
Alkoxo complexes [Re(OR)(CO)(3)(N-N)] (R=Me, Et, tBu; N-N=2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'bipyridine (bipy'), 1,10-phenanthroline (phen)) and [M(OMe)(eta(3)-allyl)(CO)(2)(phen)] (M=Mo, W) have been synthesized in good yields and using mild conditions by the reaction of sodium alkoxides with [Re(OTf)(CO)(3)(N-N)] and [MCl(eta(3)-allyl)(CO)(2)(phen)] precursors. These have been characterized by IR and NMR spectroscopy as well as by X-ray diffraction for [W(OMe)(eta(3)-allyl)(CO)(2)(phen)] (10). The reactions of the molybdenum and rhenium alkoxo complexes with isocyanates, R'NCO, yield [L(n)M[N(R')C(O)OR]] complexes; the carbamate ligand, which results from an R'NCO insertion into the Mbond;OR bond, is monodentate through the nitrogen atom. The solid-state structures of Mo and Re examples have been determined by X-ray diffraction. The geometry around the carbamate nitrogen of these compounds is planar, and the distances indicate delocalization of the nitrogen lone pair involving mainly the carbonyl groups. Experiments carried out with the Re complexes showed that aryl isocyanates are more reactive than their alkyl counterparts, and that bulky R' groups led to slow rates of insertion. Insertion reactions were also observed with isothiocyanates, although here it is the Sbond;C bond that inserts into the Mbond;OR bond, and the resulting ligand is bound to the metal by sulfur. Competition experiments with the Re compounds indicate that isocyanates are more reactive than isothiocyanates towards the Rebond;OR bonds. Tetracyanoethylene inserts into the Rebond;OMe bond of [Re(OMe)(CO)(3)(bipy')], forming a complex with a 2-methoxytetracyanoethyl ligand; the structure of which was determined by X-ray diffraction. The formation of the xanthato complex [Re(SC(S)OtBu)(CO)(3)(bipy)] (20) by reaction of [Re(OTf)(CO)(3)(bipy)] with CS(2) and NaOtBu, but not by the reaction of CS(2) and [Re(OtBu)(CO)(3)(bipy)] (5 a), suggests that the insertion reactions do not take place by ionization of the alkoxo complexes to give the free alkoxide ion.  相似文献   

8.
An arylrhodium(I) complex containing a labile dative ligand was prepared, and its reactivity toward aryl imines was investigated. The arylrhodium(I) complex (DPPE)Rh(C5H5N)(p-tol), 2, was isolated in 65% yield from [(DPPE)Rh(mu-Cl)]2, pyridine, and p-tolyllithium. Reaction of 2 with the aldimine (p-tol)CH=N(C6H4-p-CO2Me) (3a-Tol) gave the Rh amide insertion product 4 in 88% isolated yield. The solid-state structure of 4 was determined by single-crystal X-ray diffraction. The reaction of 2 with the electron-neutral and electron-rich aldimines (Ph)CH=NPh (3b) and (p-tol)CH=N(C6H4-p-OMe) (3c) also appeared to involve insertion, but the amido complexes formed from these insertions were not stable. Thus, reaction of 2 with 3b, followed by addition of Et3NHCl, gave the amine and ketimine products (Ph)(p-tol)CH-NHPh, 5, and (p-tol)(Ph)C=N(Ph), 6, in 25% and 50% yields. Several lines of data indicate that these products are formed by a sequence of transformations involving insertion of imine to give a Rh amide intermediate, beta-hydrogen elimination, cyclometalation to form a bound imine and H2, and protonolysis of the metallacycle upon addition of Et3NHCl. Consistent with this proposal, the proposed metallacycle containing the ortho-metalated ketimine ligand (p-tol)2C=N(C6H4-p-OMe) was isolated and characterized by single-crystal X-ray diffraction.  相似文献   

9.
Mechanistic analysis of hydroarylation catalysts   总被引:1,自引:0,他引:1  
Recently, two organometallic systems ([Ir(micro-acac-O)(acac-O,O)(acac-C(3))](2) and (Tp)Ru(CO)(Ph)(NCCH(3))) have been discovered that catalyze hydroarylation of unactivated olefins. Herein, we use density functional theory (B3LYP) to study the factors underlying this class of catalysts. In addition, we calculate the key steps for Rh, Pd, Os, and Pt with similar ligand sets. We previously showed there to be two key steps in the process: (i) insertion of a phenyl into the pi bond of a coordinating olefin, and (ii) C-H activation/hydrogen transfer of an unactivated benzene. An important discovery in these studies is that the barriers for these two steps are inversely correlated, complicating optimization of the overall process. However, herein we elucidate the causes of this inverse correlation, laying the foundation for the rational design of improved catalysts. Both steps are directly influenced by the accessibility of the higher 2-electron oxidation state, M(n) --> M(n+2). Systems with an easily accessible M(n+2) state activate C-H bonds easily but suffer from high energy insertions due to significant back-bonding. Conversely, systems without an easily accessible M(n+2) state have no debilitating back-bonding which makes insertion steps facile, but cannot effectively activate the C-H bond (leading instead to polymerization). The relationship between accessibility of the M(n+2) state and the amount of back-bonding in the coordinating olefin can be visualized by inspecting the hybridization of the coordinating olefin. Furthermore, we find a linear relation between this hybridization and the barrier to insertion. On the basis of these concepts, we suggest some modifications of the sigma framework expected to improve the rates beyond this linear correlation.  相似文献   

10.
With a view to applications in bifunctional catalysis, a modular cross-coupling strategy has been used to prepare amine bis(imidazolium) salts (3a and 3b) and an amine mono(imidazolium) salt (6) as precursors to chelating amido-NHC ligands. Treating the pro-ligands 3 with 3 equivalents of the bulky base KHMDS and Pd(OAc)(2) or PtCl(2)(COD) gave the four amido bis(N-heterocyclic carbene) pincer complexes [CNC-R]M-I [M = Pd (7) or Pt (8); R = i-Pr (a) or n-Bu (b)], including the first examples of platinum complexes of a CNC ligand. The reaction of 7a with AgOTf in pyridine gave the cationic complex {[CNC-i-Pr]Pd-py}OTf (9a). Heating a mixture of amine mono(imidazolium) salt 6 with PdCl(2) or K(2)PtCl(4), K(2)CO(3) and KI in pyridine at 100 °C gave the complexes [C,NH]MI(2)py [M = Pd (10) or Pt (11)], in which the amine arm of the NHC ligand is not deprotonated and does not coordinate to the metal. For a solution of 10 in 1,4-dioxane, deprotonation of the amine occurred in a biphasic reaction with aqueous KOH at 40 °C, giving the dimeric amido complex {[C,N]Pd(μ-OH)}(2) (12). The more inert Pt analogue 11 was unreactive under the same conditions. Solid-state structures of the complexes 7a, 7b, 9a, 10, 11 and 12 have been determined by single crystal X-ray diffraction.  相似文献   

11.
The reactions of [AuCl(THT)] (THT = tetrahydrothiophene) with 1 equiv of the group 14 diaminometalenes M(HMDS)(2) [M = Ge, Sn; HMDS = N(SiMe(3))(2)] lead to [Au{MCl(HMDS)(2)}(THT)] [M = Ge (1), Sn (2)], which contain a metalate(II) ligand that arises from insertion of the corresponding M(HMDS)(2) reagent into the Au-Cl bond of the gold(I) reagent. While compound 1 reacts with more Ge(HMDS)(2) to give the germanate-germylene derivative [Au{GeCl(HMDS)(2)}{Ge(HMDS)(2)}] (3), which results from substitution of Ge(HMDS)(2) for the THT ligand of 1, an analogous treatment of compound 2 with Sn(HMDS)(2) gives the stannate-stannylene derivative [Au{SnCl(HMDS)(2)}{Sn(HMDS)(2)(THT)}] (4), which has a THT ligand attached to the stannylene tin atom and which, in solution at room temperature, participates in a dynamic process that makes its two Sn(HMDS)(2) fragments equivalent (on the NMR time scale). A similar dynamic process has not been observed for the AuGe(2) compound 3 or for the AuSn(2) derivatives [Au{SnR(HMDS)(2)}{Sn(HMDS)(2)(THT)}] [R = Bu (5), HMDS (6)], which have been prepared by treating complex 4 with LiR. The structures of compounds 1 and 3-6 have been determined by X-ray diffraction.  相似文献   

12.
Yang D  Ding Y  Wu H  Zheng W 《Inorganic chemistry》2011,50(16):7698-7706
Several of alkaline-earth-metal complexes [(η(2):η(2):μ(N):μ(N)-Li)(+)](2)[{η(2)-Me(2)Si(DippN)(2)}(2)Mg](2-) (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Ca·3THF] (5), [η(2)(N,N)-Me(2)Si(DippN)(2)Sr·THF] (6), and [η(2)(N,N)-Me(2)Si(DippN)(2)Ba·4THF] (7) of a bulky bis(amido)silane ligand were readily prepared by the metathesis reaction of alkali-metal bis(amido)silane [Me(2)Si(DippNLi)(2)] (Dipp = 2,6-i-Pr(2)C(6)H(3)) and alkaline-earth-metal halides MX(2) (M = Mg, X = Br; M = Ca, Sr, Ba, X = I). Alternatively, compounds 5-7 were synthesized either by transamination of M[N(SiMe(3))(2)](2)·2THF (M = Ca, Sr, Ba) and [Me(2)Si(DippNH)(2)] or by transmetalation of Sn[N(SiMe(3))(2)](2), [Me(2)Si(DippNH)(2)], and metallic calcium, strontium, and barium in situ. The metathesis reaction of dilithium bis(amido)silane [Me(2)Si(DippNLi)(2)] and magnesium bromide in the presence of oxygen afforded, however, an unusual lithium oxo polyhedral complex {[(DippN(Me(2)Si)(2))(μ-O)(Me(2)Si)](2)(μ-Br)(2)[(μ(3)-Li)·THF](4)(μ(4)-O)(4)(μ(3)-Li)(2)} (8) with a square-basket-shaped core Li(6)Br(2)O(4) bearing a bis(aminolato)silane ligand. All complexes were characterized using (1)H, (13)C, and (7)Li NMR and IR spectroscopy, in addition to X-ray crystallography.  相似文献   

13.
The epoxidation of olefins by peroxo complexes of Cr(VI), Mo(VI) and W(VI) was investigated using the B3LYP hybrid density functional method. For the mono- and bisperoxo model complexes with the structures (NH(3))(L)M(O)(2)(-)(n)()(eta(2)-O(2))(1+)(n)() (n = 0, 1; L = none, NH(3); M = Cr, Mo, W) and ethylene as model olefin, two reaction mechanism were considered, direct oxygen transfer and a two-step insertion into the metal-peroxo bond. The calculations reveal that direct attack of the nucleophilic olefin on an electrophilic peroxo oxygen center via a transition state of spiro structure is preferred as significantly higher activation barriers were calculated for the insertion mechanism than for the direct mechanism. W complexes are the most active in the series investigated with the calculated activation barriers of direct oxygen transfer to ethylene decreasing in the order Cr > Mo > W. Barriers of bisperoxo species are lower than those of the corresponding monoperoxo species. Coordination of a second NH(3) base ligand to the mono-coordinated species, (NH(3))M(O)(2)(eta(2)-O(2)) and (NH(3))MO(eta(2)-O(2))(2), results in a significant increase of the activation barrier which deactivates the complex. Finally, based on a molecular orbital analysis, we discuss factors that govern the activity of the metal peroxo group M(eta(2)-O(2)), in particular the role of metal center.  相似文献   

14.
The compounds M(2)(mhp)(4), where M = Mo or W and mhp is the anion formed from deprotonation of 2-hydroxy-6-methylpyridine, are shown to react with carboxylic acids RCOOH to give an equilibrium mixture of products M(2)(O(2)CR)(n)(mhp)(4-n) where R = 2-thienyl and phenyl. The equilibrium can be moved in favor of M(2)(O(2)CR)(4) by the addition of excess acid or by the favorable crystallization of these products. The latter provides a facile synthesis of the W(2)(O(2)CR)(4) compound where R = 9-anthracene. Reactions involving 2,4,6-triisopropyl benzoic acid, TiPBH, yield M(2)(TiPB)(2)(mhp)(2) compounds as thermodynamic products. Reactions involving Me(3)OBF(4) (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(CH(3)CN)(2)BF(4) and Mo(2)(mhp)(2)(CH(3)CN)(4)(BF(4))(2), respectively. The latter compound has been structurally characterized and shown to have mirror symmetry with two cis mhp ligands: MoMo = 2.1242(5) A, Mo-O = 2.035(2) A, Mo-N(mhp) = 2.161(2) A, and Mo-N(CH(3)CN) = 2.160(3) and 2.170(3) A. Reactions involving Mo(2)(mhp)(3)(CH(3)CN)(2)(2+) and Mo(2)(mhp)(2)(CH(3)CN)(4)(2+) with (n)Bu(4)NO(2)CMe (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(O(2)CMe) and Mo(2)(mhp)(2)(O(2)CMe)(2) which are shown to be kinetically labile to ligand scrambling. Reactions between Mo(2)(mhp)(3)(CH(3)CN)(2)(+)BF(4)(-) (2 equiv.) and [(n)Bu(4)N(+)](2)[O(2)C-X-CO(2)](2-) yielded dimers of dimers [Mo(2)(mhp)(3)](2)(micro-O(2)C-X-CO(2)] where X = nothing, 2,5- or 3,4-thienyl and 1,4-C(6)H(4). Reactions between Mo(2)(mhp)(2)(CH(3)CN)(4)(2+)(BF(4)(-))(2) and tetra-n-butylammonium oxalate and terephthalate yield compounds [Mo(mhp)(2)bridge](n) which by MALDI-TOF MS are proposed to be a mixture of molecular squares (n = 4) and triangles (n = 3) along with minor products of [Mo(2)(mhp)(3)](2)(bridge) and Mo(2)(mhp)(4) that arise from ligand scrambling.  相似文献   

15.
Novel mixed amido/imido/guanidinato complexes of niobium are reported. The complexes were synthesized by insertion of two equivalents of di-isopropylcarbodiimide (i-Pr-cdi) or bis-cyclohexylcarbodiimide (Cy-cdi) respectively, into the niobium-amido bonds of [Nb(NR(2))(3)(N-t-Bu)] (, R = Me; , R = Et) starting out from [NbCl(3)(N-t-Bu)(py)(2)] and the respective LiNR(2) reagent (py = pyridine). Four representative examples of these mixed ligand amido/imido/guanidinato compounds were synthesized and were characterized by (1)H-NMR, (13)C-NMR, (15)N-NMR, CHN-analysis, mass spectrometry and infra-red spectroscopy. The molecular structures of [Nb(NR(2)){eta(2)-(i-Pr-N)(2)C(NR(2))}(2)(N-t-Bu)] (, R = Me; , R = Et) in the solid state were determined by single-crystal X-ray diffraction studies and are discussed together with the molecular structure of the starting compound [Nb(NMe(2))(3)(N-t-Bu)] (). The thermal properties of the new compounds depend on the substitution at the guanidinato ligand. Complexes of i-Pr-cdi are significantly more volatile than complexes of Cy-cdi as revealed by thermogravimetric analysis. Preliminary experiments using as a single-molecule source for metal-organic chemical vapour deposition (MOCVD) in the absence of ammonia indicate the formation of the stoichiometric, and surprisingly carbon-free, cubic niobium nitride phase.  相似文献   

16.
Kinetic studies of the reactions of [M(CO)(L-L)I] [M = Rh, Ir; L-L = Ph(2)PCH(2)P(S)Ph(2) (dppms), Ph(2)PCH(2)CH(2)PPh(2) (dppe), and Ph(2)PCH(2)P(O)Ph(2) (dppmo)] with methyl iodide have been undertaken. All the chelate ligands promote oxidative addition of methyl iodide to the square planar M(I) centers, by factors of between 30 and 50 compared to the respective [M(CO)(2)I(2)](-) complexes, due to their good donor properties. Migratory CO insertion in [Rh(CO)(L-L)I(2)Me] leads to acetyl complexes [Rh(L-L)I(2)(COMe)] for which X-ray crystal structures were obtained for L-L = dppms (3a) and dppe (3b). Against the expectations of simple bonding arguments, methyl migration is faster by a factor of ca. 1500 for [Rh(CO)(dppms)I(2)Me] (2a) than for [Rh(CO)(dppe)I(2)Me] (2b). For M = Ir, alkyl iodide oxidative addition gives stable alkyl complexes [Ir(CO)(L-L)I(2)R]. Migratory insertion (induced at high temperature by CO pressure) was faster for [Ir(CO)(dppms)I(2)Me] (5a) than for its dppe analogue (5b). Reaction of methyl triflate with [Ir(CO)(dppms)I] (4a) yielded the dimer [[Ir(CO)(dppms)(mu-I)Me](2)](2+) (7), which was characterized crystallographically along with 5a and [Ir(CO)(dppms)I(2)Et] (6). Analysis of the X-ray crystal structures showed that the dppms ligand adopts a conformation which creates a sterically crowded pocket around the alkyl ligands of 5a, 6, and 7. It is proposed that this steric strain can be relieved by migratory insertion, to give a five-coordinate acetyl product in which the sterically crowded quadrants flank a vacant coordination site, exemplified by the crystal structure of 3a. Conformational analysis indicates similarity between M(dppms) and M(2)(mu-dppm) chelate structures, which have less flexibility than M(dppe) systems and therefore generate greater steric strain with the "axial" ligands in octahedral complexes. Ab initio calculations suggest an additional electronic contribution to the migratory insertion barrier, whereby a sulfur atom trans to CO stabilizes the transition state compared to systems with phosphorus trans to CO. The results represent a rare example of the quantification of ligand effects on individual steps from catalytic cycles, and are discussed in the context of catalytic methanol carbonylation. Implications for other catalytic reactions utilizing chelating diphosphines (e.g., CO/alkene copolymerization and alkene hydroformylation) are considered.  相似文献   

17.
Reactions of [M(2)(&mgr;-Cl)(2)(cod)(2)] (cod = 1,5-cyclooctadiene, M = Rh, Ir) with benzimidazole-2-thiol (H(2)Bzimt) afford the mononuclear complexes [MCl(H(2)Bzimt)(cod)] (M = Rh (1), Ir (2)) for which a S-coordination of the ligand is proposed based on their spectroscopic data. The dinuclear complexes [M(2)(&mgr;-HBzimt)(2)(cod)(2)] (M = Rh (3), Ir (4)) are isolated from the reaction of [M(acac)(cod)] and benzimidazole-2-thiol. They contain the monodeprotonated ligand (HBzimt(-)) bridging the two metals in a &mgr;(2)-(1kappaN,2kappaS) coordination mode and in a relative cis,cis-HT arrangement. Complexes 3 and 4 react with the appropriate species [M(cod)(Me(2)CO)(2)](+) to afford the trinuclear cationic aggregates [M(3)(&mgr;-HBzimt)(2)(cod)(3)](+) (M = Rh (5), Ir (6)) and with the [M'(2)(&mgr;-OMe)(2)(cod)(2)] compounds to give the homo- and heterotetranuclear complexes [MM'(&mgr;-Bzimt)(cod)(2)](2) (M = M' = Rh (7), Ir (8); M = Ir, M' = Rh (9)) containing the dideprotonated ligand (Bzimt(2)(-)). The trinuclear neutral complexes [M(3)(&mgr;-Bzimt)(&mgr;-HBzimt)(cod)(3)] are intermediates detected in the synthesis of the tetranuclear complexes. Protonation of 9 with HBF(4) gives the unsymmetrical complex [Ir(2)Rh(&mgr;-HBzimt)(2)(cod)(3)]BF(4) (10). This reaction involves the protonation of the bridging ligands followed by the removal of one "Rh(cod)" moiety to give a single isomer. The molecular structure of [Rh(2)(&mgr;-Bzimt)(cod)(2)](2) (7) has been determined by X-ray diffraction methods. Crystals are monoclinic, space group P2(1)/n, a = 20.173(5) ?, b = 42.076(8) ?, c = 10.983(3) ?, beta = 93.32(2) degrees, Z = 8, 7145 reflections, R = 0.0622, and R(w) = 0.0779. The complete assignment of the resonances of the (1)H NMR spectra of the complexes 3, 4, and 7-9 was carried out by selective decoupling, NOE, and H,H-COSY experiments. The differences in the chemical shifts of the olefinic protons are discussed on the basis of steric and magnetic anisotropy effects.  相似文献   

18.
A series of L(2) = diimine (Bian = bis(3,5-diisopropylphenylimino)acenapthene, Bu(t)(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridine) supported aqua, hydroxo, oxo, amido, imido, and mixed complexes have been prepared. Deprotonation of [L(2)Pt(mu-OH)](2)(2+) with 1,8-bis(dimethylamino)naphthalene, NaH, or KOH yields [(L(2)Pt)(2)(mu-OH)(mu-O)](+) as purple (Bian) or red (Bu(t)(2)bpy) solids. Excess KOH gives dark blue [(Bian)Pt(mu-O)](2). MeOTf addition to [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-O)](+) gives [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-OMe)](2+) while [(Bian)Pt(mu-O)](2) yields [(Bian)(2)Pt(2)(mu-OMe)(mu-O)](+). Treatment of [(Bian)Pt(mu-O)](2) with "(Ph(3)P)Au(+)" gives deep purple [(Bian)(2)Pt(2)(mu-O)(mu-OAuPPh(3))](+) while (COD)Pt(OTf)(2) gives a low yield of [(Bian)Pt(3)(mu-OH)(3)(COD)(2)](OTf)(3). Ni(Bu(t)(2)bpy)Cl(2) and [(Ph(3)PAu)(3)(mu-O)](+) in a 3 : 2 ratio yield red [Ni(3)(Bu(t)(2)bpy)(3)(mu-O)(2)](2+). M(Bu(t)(2)bpy)Cl(2) (M = Pd, Pt) and [(Ph(3)PAu)(3)(mu-O)](+) give [M(Bu(t)(2)bpy)(mu-OAuPPh(3))](2)(2+) and [Pd(4)(Bu(t)(2)bpy)(4)(mu-OAuPPh(3))](3+). Addition of ArNH(2) to [M(Bu(t)(2)bpy)(mu-OH)](2)(2+) (M = Pd, Pt) gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NHAr)(mu-OH)](2+) (Ar = Ph, 4-tol, 4-C(6)H(4)NO(2)) and [M(Bu(t)(2)bpy)(mu-NHAr)](2)(2+) (Ar = Ph, tol). Deprotonation of [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-OH)](2+) with 1,8-bis(dimethylamino)naphthalene or NaH gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-O)](+). Deprotonation of [Pt(Bu(t)(2)bpy)(mu-NH-tol)](2)(2+) with KOBu(t) gives deep green [Pt(Bu(t)(2)bpy)(mu-N-tol)](2). The triflate complexes M(Bu(t)(2)bpy)(OTf)(2) (M = Pd, Pt) are obtained from M(Bu(t)(2)bpy)Cl(2) and AgOTf. Treatment of Pt(Bu(t)(2)bpy)(OTf)(2) with water gives the aqua complex [Pt(Bu(t)(2)bpy)(H(2)O)(2)](OTf)(2).  相似文献   

19.
Attempts at synthesizing first-row transition-metal complexes of the 3-hydroxy-4-[(1'S,2'R)-(2-hydroxy-1',2'-diphenylethyl)amino]-3-cyclobutene-1,2-dione ligand in alcoholic solutions resulted in the formation of the monomers [M(NH(2)C(4)O(3))(2)(H(2)O)(4)] [M = Mn (1), Co (2), Ni (3), Cu (4), Zn (5)] instead, as a result of the hydrolysis of the ligand. 1, 2, and 3 are isomorphous (C2/c), with the metal atoms octahedrally coordinated to four aqua and two cis aminosquarate ligands. The copper and zinc complexes (4 and 5) have the same molecular formula as 1-3 but belong to the C2/m and P2(1)/c space groups respectively. 4 has square-pyramidal geometry with trans-oriented aminosquarate ligands in the basal plane; aqua ligands complete the coordination sphere. 5 has octahedral geometry, with four aqua and two trans-oriented aminosquarate ligands. Reaction of aqueous solutions of the anilinosquarate ligand with Ln(NO(3))(3) x xH(2)O produced the eight-coordinate complexes {Sm(mu-C(6)H(5)NHC(4)O(3))(3)(H(2)O)(4) x 3H(2)O}n (6), {[M(mu(2)-C(4)O(4))(H(2)O)(6)][C(6)H(5)NHC(4)O(3)] x 4H(2)O}n [M = Er (7), Yb (8)], {Sm(C(6)H(5)NHC(4)O(3)) (mu(3)-C(4)O(4))(H(2)O)(4) x H(2)O}(n) (9), and {[{(C(6)H(5)NHC(4)O(3))(2)(H(2)O)(5)Yb}(2)(mu-C(4)O(4))] x 4H(2)O}n (10). 7 and 8 are isomorphous with the previously reported analogues Eu, Gd, and Tb ionic polymers. The presence of the squarate ligand in 7-10 is indicative of some form of hydrolysis of the anilinosquarate ligand during their syntheses. However, hydrolysis was not evident in the synthesis of 6. The mechanism for the hydrolysis in the syntheses of 1-5 is apparently different from that for 7-10.  相似文献   

20.
Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) chelates with tenoxicam (Ten) drug (H(2)L(1)) and dl-alanine (Ala) (HL(2)) and also the binary UO(2)(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO(2)(II) binary chelate was isolated in 1:2 ratio with the formula [UO(2)(H(2)L)(2)](NO(3))(2). The ternary chelates were isolated in 1:1:1 (M:H(2)L(1):L(2)) ratios and have the general formulae [M(H(2)L(1))(L(2))(Cl)(n)(H(2)O)(m)].yH(2)O (M=Fe(III) (n=2, m=0, y=2), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=3)); [M(H(2)L(1))(L(2))](X)(z).yH(2)O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO(2)(II) (X=NO(3), z=1, y=2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号