首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The conductance of short ballistic wires with boundaries, whose curvature radius is comparable to the electron wavelength, is investigated. It is found that, in such wires, no conductance quantization takes place. Instead, pronounced interference effects are observed. These effects are related to the Fabry-Perot interference by the wire edges and with the mesoscopic interference caused by the coherent scattering of electrons by the wire edges and by the impurities located in the near-wire regions of the 2D electron gas. Original Russian Text ? D.A. Kozlov, Z.D. Kvon, A.E. Plotnikov, D.V. Shcheglov, A.V. Latyshev, 2007, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 10, pp. 752–756.  相似文献   

2.
We investigate theoretically the spin-dependent electron transport in a Rashba quantum wire with rough edges. The charge and spin conductances are calculated as function of the electron energy and wire length by adopting the spin-resolved lattice Green function method. For a single disordered Rashba wire, it is found that the charge conductance quantization is destroyed by the edge disorder. However, a nonzero spin conductance can be generated and its amplitude can be manipulated by varying the wire length, which is attributed to the broken structure symmetries and the spin-dependent quantum interference induced by the rough boundaries. For a large ensemble of disordered Rashba wires, the average charge conductance decreases monotonically, however, the average spin conductance increases to a maximum value and then decreases, with increasing wire length. Further study shows that the influence of the rough edges on the charge and spin conductances can be eliminated by applying a perpendicular magnetic field to the wire. In addition, a very large magnitude of the spin conductance can be achieved when the electron energy lies between the two thresholds of each pair of subbands. These findings may not only benefit to further apprehend the transport properties of the Rashba low-dimensional systems but also provide some theoretical instructions to the application of spintronics devices.  相似文献   

3.
Quantum-mechanical calculations of the conductance for model devices, consisting of dual semi-infinite quantum wires connected in series by a cavity, are carried out with use of the coupled-mode transfer method and mode matching technique. The effects of the mode-mode coupling and geometry-induced scattering on the quantum conductance are in detail studied by varying the geometric structure of the cavity. There are no traces of quantization conductance. The pattern of the conductance displays many peaks and dips. The threshold energy of the first onset of the conductance is lower than the normal value for opening the propagation channel of the lowest subband in the quantum wire. The overall character of the conductance exhibits heavy fluctuations around the classical conductance for the relevant point contact. The fluctuation amplitude is of order of 2e 2/h, similar to universal conductance fluctuations. The oscillatory structure becomes rich and dense as the scale of the cavity increases. There is a global trend for the conductance to rise as the cavity is compressed. The structures of resonant peaks and antiresonance dips in the conductance are originated from the mode coupling among the subbands in the cavity and quantum wires. The heavy conductance fluctuation may be caused by the quantum interference of the electron waves due to the multiple scattering (reflections) of electrons by the cavity boundaries.  相似文献   

4.
We measure the Coulomb drag between parallel split-gate quantum wires with a quantum dot embedded in one of the two wires (drive wire). We observe negative Coulomb drag when a Coulomb oscillation peak appears in the drive wire and the conductance of the other wire (drag wire) is slightly below the first plateau. This indicates that correlation holes are dragged in the drag wire by single electron tunneling through the quantum dot in the drive wire. The drag is only promoted in the drag wire near the barrier regions of the dot, and low compressibility of the drag wire is necessary for the negative drag to occur.  相似文献   

5.
We study the scaling properties of universal conductance fluctuations, observed in the magneto-resistance of quasi ballistic, split gate wires. In such devices the correlation field analysis is not simply determined by theoretical predictions for corresponding diffusive systems, and we discuss this breakdown in terms of a spreading of phase coherent electron interference, into the ungated regions of the devices. In order to characterise this effect we develop a simple model, in which the degree of spreading is represented by a single parameter γ. Performing this analysis we find that γ scales as a simple function of the wire length and width, enabling us to characterise the interplay of interference from the different regions of the split gate wire.  相似文献   

6.
Luttinger liquid theory describes one-dimensional electron systems in terms of noninteracting bosonic excitations. In this approximation thermal excitations are decoupled from the current flowing through a quantum wire, and the conductance is quantized. We show that relaxation processes not captured by the Luttinger liquid theory lead to equilibration of the excitations with the current and give rise to a temperature-dependent correction to the conductance. In long wires, the magnitude of the correction is expressed in terms of the velocities of bosonic excitations. In shorter wires it is controlled by the relaxation rate.  相似文献   

7.
First principle calculations of the conductance of gold atomic wires containing chain of 3–8 atoms each with 2.39 Å bond lengths are presented using density functional theory. Three different configurations of wire/electrodes were used. For zigzag wire with semi-infinite crystalline electrodes, even–odd oscillation is observed which is consistent with the previously reported results. A lower conductance is observed for the chain in semi-infinite crystalline electrodes compared to the chains suspended in wire-like electrode. The calculated transmission spectrum for the straight and zig-zag wires suspended between semi-infinite crystalline electrodes showed suppression of transmission channels due to electron scattering occurring at the electrode-wire interface.  相似文献   

8.
We study the magnetic field dependence of the correlation field ΔBcand amplitude δgof the conductance fluctuations, observed in the low temperature magnetoresistance of GaAs/AlGaAs split-gate wires. Near zero field, universality of quantum interference is retained and the magnetoresistance shows universal conductance fluctuations. At high magnetic fields, although the discrete Landau level quantization becomes resolved. ΔBcand δgare found to increase linearly with magnetic field, with a slope which depends upon the nature of electron scatterings in the wire.  相似文献   

9.
0.7 Structure and zero bias anomaly in ballistic hole quantum wires   总被引:1,自引:0,他引:1  
We study the anomalous conductance plateau around G=0.7(2e2/h) and the zero bias anomaly in ballistic hole quantum wires with respect to in-plane magnetic fields applied parallel B parallel and perpendicular B perpendicular to the quantum wire. As seen in electron quantum wires, the magnetic fields shift the 0.7 structure down to G=0.5(2e2/h) and simultaneously quench the zero bias anomaly. However, these effects are strongly dependent on the orientation of the magnetic field, owing to the highly anisotropic effective Landé g-factor g* in hole quantum wires. Our results highlight the fundamental role that spin plays in both the 0.7 structure and zero bias anomaly.  相似文献   

10.
We calculate the linear and nonlinear conductance of spinless fermions in clean, long quantum wires, where short-ranged interactions lead locally to equilibration. Close to the quantum phase transition, where the conductance jumps from zero to one conductance quantum, the conductance obtains a universal form governed by the ratios of temperature, bias voltage, and gate voltage. Asymptotic analytic results are compared to solutions of a Boltzmann equation which includes the effects of three-particle scattering. Surprisingly, we find that for long wires the voltage predominantly drops close to one end of the quantum wire due to a thermoelectric effect.  相似文献   

11.
We theoretically investigated the electromagnetic wave (EMW) transmission along two parallel wires of laser plasma filaments produced by the filamentation of ultrafast laser pulses in air. Many factors, such as wire diameter and separation, electron density, and operating frequency are shown to influence the propagation loss. By taking into consideration the radiation and transmission effects of the wires, the calculations of the two parallel filament wires reasonably agrees with that of the standard commercial twin-lead wire. Specifically, the optimum separation of the two wires is determined for a given frequency and an effective electron density of the wires. When compared with free-space propagation, transmission enhancement of tens dB is obtained using optimized wire configurations. Thus, the two plasma wires may be a potential channel for point to point directed delivery of EM energy or communication of pulsed-modulated EM radiation.  相似文献   

12.
We theoretically investigate the ballistic conductance of hollow quantum wires made of a two-dimensional electron gas occupying a cylindrical surface. The dependence of the conductance on the electron Fermi momentum differs drastically from the conventional case of a strip-like wire. We trace the evolution between these two cases in an exactly solvable model of a circular cylinder affected by a δ-like potential barrier along its element. We consider also a cylinder with two diametrically opposite δ-function barriers, the case representing somewhat realistic semiconductor structures. The general consequences of the boundary condition topology are also discussed.  相似文献   

13.
The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μB, while the orbital moment as high as 0.5 μB. The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5×4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment.  相似文献   

14.
We present first-principles calculations based on density functional theory for the conductance of monatomic Al wires between Al(111) electrodes. In contrast to the even-odd oscillations observed in other metallic wires, the conductance of the Al wires is found to oscillate with a period of four atoms as the length of the wire is varied. Although local charge neutrality can account for the observed period, it leads to an incorrect phase. We explain the conductance behavior using a resonant transport model based on the electronic structure of the infinite wire.  相似文献   

15.
Editorial     
Abstract

A method is proposed for studying wave and particle transport in disordered waveguide systems of dimension higher than unity by means of exact one-dimensionalization of the dynamic equations in the mode representation. As a particular case, the T=0 conductance of a two-dimensional quantum wire is calculated, which exhibits ohmic behaviour, with length-dependent conductivity, at any conductor length exceeding the electron quasi-classical mean free path. The unconventional diffusive regime of charge transport is found in the range of conductor lengths where the electrons are commonly considered as localized. In quantum wires with more than one conducting channel, each being identified with the extended waveguide mode, the inter-mode scattering is proven to serve as a phase-breaking mechanism that prevents interference localization without real inelasticity of interaction.  相似文献   

16.
The contact conductance between graphene and two quantum wires which serve as the leads to connect graphene and electron reservoirs is theoretically studied. Our investigation indicates that the contact conductance depends sensitively on the graphene-lead coupling configuration. When each quantum wire couples solely to one carbon atom, the contact conductance vanishes at the Dirac point if the two carbon atoms coupling to the two leads belong to the same sublattice of graphene. We find that such a feature arises from the chirality of the Dirac electron in graphene. Such a chirality associated with conductance zero disappears when a quantum wire couples to multiple carbon atoms. The general result irrelevant to the coupling configuration is that the contact conductance decays rapidly with the increase of the distance between the two leads. In addition, in the weak graphene-lead coupling limit, when the distance between the two leads is much larger than the size of the graphene-lead contact areas and the incident electron energy is close to the Dirac point, the contact conductance is proportional to the square of the product of the two graphene-lead contact areas, and inversely proportional to the square of the distance between the two leads.  相似文献   

17.
肖贤波  李小毛  陈宇光 《物理学报》2009,58(11):7909-7913
理论上研究了含stubs的Rashba自旋轨道耦合(spin-orbit coupling, SOC)量子波导系统的自旋极化输运性质. 利用晶格格林函数方法,发现由于stubs和SOC产生的势阱使系统中出现束缚态,这些束缚态与传播态之间相互干涉导致电导中出现Fano共振结构,同时在对应的自旋极化率中也出现Fano共振或反共振结构. 此外,由于系统结构的突变使电子被反向散射和量子干涉效应,电导中出现一系列的共振峰. 但是,当系统加上外磁场后,所有这些效应都被抑制, 系统重新出现量子化电导, 同时自旋电导也出 关键词: 量子波导 自旋极化输运 自旋轨道耦合  相似文献   

18.
We theoretically investigate the ballistic conductance of hollow quantum wires made of a two-dimensional electron gas occupying a cylindrical surface. The dependence of the conductance on the electron Fermi momentum differs drastically from the conventional case of a strip-like wire. We trace the evolution between these two cases in an exactly solvable model of a circular cylinder affected by a δ-like potential barrier along its element. We consider also a cylinder with two diametrically opposite δ-function barriers, the case representing somewhat realistic semiconductor structures. The general consequences of the boundary condition topology are also discussed.  相似文献   

19.
We consider wires near a zero temperature transition between superconducting and metallic states. The critical theory obeys hyperscaling, which leads to a universal frequency, temperature, and length dependence of the conductance; quantum and thermal phase slips are contained within this critical theory. Normal, superconducting, and mixed (SN) leads on the wire determine distinct universality classes. For the SN case, wires near the critical point have a universal dc conductance which is independent of the length of the wire at low temperatures.  相似文献   

20.
We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号