首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol < ethanol < isopropanol < dioxane. The multilayered coatings were developed using layer-by-layer deposition of interpolymer complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.  相似文献   

2.
We report on a single-step coating process and the resulting colloidal stability of silica-coated spindle-type hematite nanoparticles (NPs) decorated with a layer of poly(acrylic acid) (PAA) polyelectrolyte chains that are partially incorporated into the silica shell. The stability of PAA coated NPs as a function of pH and salt concentration in water was compared to bare hematite particles and simple silica-coated hematite NPs, studying their electrophoretic mobility and the hydrodynamic radius by dynamic light scattering. Particles coated with this method were found to be more stable upon the addition of salt at pH 7, and their aggregation at the pH of the isoelectric point is reversible. The hybrid coating appears to increase the colloidal stability in aqueous media due to the combination of the decrease of the isoelectric point and the electrosteric stabilization. This coating method is not limited to hematite particles but can easily be adapted to any silica-coatable particle.  相似文献   

3.
The current study reports the facile design of quantum dot (QD)-conjugated lipids and their application to high-speed tracking experiments on cell surfaces. CdSe/ZnS core/shell QDs with two types of hydrophilic coatings, 2-(2-aminoethoxy)ethanol (AEE) and a 60:40 molar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine and 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine- N-[methoxy(polyethylene glycol-2000], are conjugated to sulfhydryl lipids via maleimide reactive groups on the QD surface. Prior to lipid conjugation, the colloidal stability of both types of coated QDs in aqueous solution is confirmed using fluorescence correlation spectroscopy. A sensitive assay based on single lipid tracking experiments on a planar solid-supported phospholipid bilayer is presented that establishes conditions of monovalent conjugation of QDs to lipids. The QD-lipids are then employed as single-molecule tracking probes in plasma membranes of several cell types. Initial tracking experiments at a frame rate of 30 frames/s corroborate that QD-lipids diffuse like dye-labeled lipids in the plasma membrane of COS-7, HEK-293, 3T3, and NRK cells, thus confirming monovalent labeling. Finally, QD-lipids are applied for the first time to high-speed single-molecule imaging by tracking their lateral mobility in the plasma membrane of NRK fibroblasts with up to 1000 frames/s. Our high-speed tracking data, which are in excellent agreement with previous tracking experiments that used larger (40 nm) Au labels, not only push the time resolution in long-time, continuous fluorescence-based single-molecule tracking but also show that highly photostable, photoluminescent nanoprobes of 10 nm size can be employed (AEE-coated QDs). These probes are also attractive because, unlike Au nanoparticles, they facilitate complex multicolor experiments.  相似文献   

4.
Polymer particles coated with hydroxyapatite were prepared by treating Pd0 immobilized polystyrene-co-acrylic acid particles in aqueous CaCl2 and NaH2PO2 solutions. Hydroxyapatite coating took place at neutral to alkaline pH conditions, and the homogeneous growth of the hydroxyapatite layer on the surface of polymer particles was observed at relatively low temperature (30-50 degrees C). The thickness of the hydroxyapatite layer increased with reaction time. Copyright 1999 Academic Press.  相似文献   

5.
Iron oxide nanoparticles are used in vivo as contrast agents in magnetic resonance imaging. Their widely used polymer coatings are directly involved in their biocompatibility and avoid magnetic aggregation. As these polymer brushes also limit their tissular diffusion due to important hydrodynamic sizes, this work looks to obtain particles coated with thin layers of organic biocompatible molecules. Coating molecules were chosen depending on their fixation site on iron cores; carboxylates, sulfonates, phosphates, and phosphonates, and, among them, analogs of the phosphorylcholine. Two coating procedures (dialysis and exchange resins purification) were evaluated for hydrodynamic size, total iron concentration, electrophoretic mobility, and colloidal stability. Furthermore, a complementary test on stainless steel plates evaluated the contamination by competition of phosphonates as a rough estimation of the biocompatibility of the particles. Coating with bisphosphonates, the more interesting fixation moiety, leads to small (less than 15 nm) and stable objects in a wide range of pH including the neutrality. From stability data, the coating density was evaluated at around 1.6 molecules per nm(2). Including a quaternary ammonium salt to the coating molecule lowers their electrophoretic mobility. Moreover, this type of coating protects steel plates against contamination without significant desorption. All these properties allow further developments of these nanoparticles for biomedical applications. Copyright 2001 Academic Press.  相似文献   

6.
We have synthesized ferromagnetic nanoparticles with an imprinted polymer coating that is capable of adsorbing and extracting uranyl ions. The adsorbent was characterized using infrared spectroscopy, elemental analysis, X-ray powder diffraction analysis, and scanning electron microscopy. The effects of sample pH, sample volume, weight of the adsorbent, contact time and of other ions have been investigated in the batch extraction mode. The performance of the material was compared to that of particles coated with a non-imprinted polymer. The adsorbent containing the imprinted coating displays higher sorption capacity and better selectivity to uranyl ions. The method was successfully applied to the determination of uranyl ions in water samples.
Figure
Magnetic separation of uranyl ions from aqueous solution using a new uranyl-imprinted material prepared by surface modification of silica coated magnetic nanoparticles  相似文献   

7.
Aluminum nanoparticles were coated by epoxy polymer in order to prevent the corrosion reaction. The coverage of the epoxy polymer film was controlled from 0% to 100%, which changed the corrosion rate of nanoparticles quantitatively. The surface of the polymer coating was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM), and the corrosion resistance of these nanoparticles was estimated by the wet/dry corrosion test on platinum (Pt) plate with a NaCl solution. From a TEM analysis, 10 mass% polymer‐coated Al particles in the synthesis were almost 100% covered on the surface by a polymer film of 10 nm thick. On the other hand, 3 mass% polymer‐coated Al was partially covered by a film. In the AFM–Kelvin force microscopy, the potential around the Al particles had a relatively low value by the polymer coating, which indicated that the conductivity of the Al was isolated from Pt plate by the polymer. Both the corrosion and H2 evolution reaction rates were quantitatively reduced by the mass% of polymer coating. In the case of 10 mass% coated sample, there was very little corrosion of Al nanoparticles. This fact suggested that the electrochemical reaction was suppressed by the polymer coating. Thus, it was found that the corrosion reaction rate of Al nanoparticles could be quantitatively suppressed by the mass% of epoxy coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Most NIR-IIb fluorophores are nanoparticle-based probes with long retention (≈1 month or longer) in the body. Here, we applied a novel cross-linked coating to functionalize core/shell lead sulfide/cadmium sulfide quantum dots (PbS/CdS QDs) emitting at ≈1600 nm. The coating was comprised of an amphiphilic polymer followed by three crosslinked amphiphilic polymeric layers (P3 coating), imparting high biocompatibility and >90 % excretion of QDs within 2 weeks of intravenous administration. The P3-QDs were conjugated to an engineered anti-CD8 diabody (Cys-diabody) for in vivo molecular imaging of CD8+ cytotoxic T lymphocytes (CTLs) in response to anti-PD-L1 therapy. Two-plex molecular imaging in combination with down-conversion Er nanoparticles (ErNPs) was performed for real-time in vivo monitoring of PD-L1 positive tumor cells and CTLs with cellular resolution by non-invasive NIR-IIb light sheet microscopy. Imaging of angiogenesis in the tumor microenvironment and of lymph nodes deep in the body with a signal-to-background ratio of up to ≈170 was also achieved using P3-QDs.  相似文献   

9.
We report the synthesis of micellar phosphatidylcholine‐coated superparamagnetic iron oxide nanoparticles as a new long circulation contrast agents for magnetic resonance imaging. Oleic acid‐coated Fe3O4 nanoparticles were first prepared through thermal degradation and then encapsulated into small clusters with a phosphatidylcholine coating to obtain hydrophilic nanomicelles. A thorough characterization confirmed the chemical nature of the coating and the excellent colloidal stability of these nanomicelles in aqueous media. Magnetization and relaxivity properties proved their suitability as magnetic resonance imaging (MRI) contrast agent and in vitro cell viability data showed low toxicity. Vascular lifetime and elimination kinetics in the liver were assessed by blood relaxometry and by in vivo MRI in rats and compared with “control” particles prepared with a polyethylene glycol derivative. These micellar particles had a lifetime in blood of more than 10 h, much longer than the control nanoparticles (≈2 h), which is remarkable considering that the coating molecule is a small biocompatible zwitterionic phospholipid. The protein corona was characterized after incubation with rat serum at different times by high‐throughput proteomics, showing a higher proportion of bound apolipoproteins and other dysopsonins for the phosphatidylcholine particles. The antibiofouling properties of this corona and its resistance to the adsorption of proteins corroborate the observed enhanced stability and prolonged systemic circulation.  相似文献   

10.
The fabrication, characterization, and implementation of poly(lipid)-coated, highly luminescent silica nanoparticles as fluorescent probes for labeling of cultured cells are described. The core of the probe is a sol-gel-derived silica nanoparticle, 65-100 nm in diameter, in which up to several thousand dye molecules are encapsulated (Lian, W.; et al. Anal. Biochem. 2004, 334, 135-144). The core is coated with a membrane composed of bis-sorbylphosphatidylcholine, a synthetic polymerizable lipid that is chemically cross-linked to enhance the environmental and chemical stability of the membrane relative to a fluid lipid membrane. The poly(lipid) coating has two major functions: (i) to reduce nonspecific interactions, based on the inherently biocompatible properties of the phosphorylcholine headgroup, and (ii) to permit functionalization of the particle, by doping the coating with lipids bearing chemically reactive or bioactive headgroups. Both functions are demonstrated: (i) Nonspecific adsorption of dissolved proteins to bare silica nanoparticles and of bare nanoparticles to cultured cells is significantly reduced by application of the poly(lipid) coating. (ii) Functionalization of poly(lipid)-coated nanoparticles with a biotin-conjugated lipid creates a probe that can be used to target both dissolved protein receptors as well as receptors on the membranes of cultured cells. Measurements performed on single nanoparticles bound to planar supported lipid bilayers verify that the emission intensity of these probes is significantly greater than that of single protein molecules labeled with several fluorophores.  相似文献   

11.
The behavior of individual 1,7-dicetyltetraaza-12-crown-4 and its mixture with 1,4,7,10-tetracetyltetraaza-12-crown-4 in the Langmuir monolayers at the subphases containing Cu(II) ions or colloidal gold particles is studied. Based on the compression isotherms, the complexing ability of these amphiphilic cyclenes in a monolayer at the surface of aqueous dilute solutions of copper salt is established. It was shown that the fraction of complexes in a monolayer is proportional to the copper ion concentration in the subphase. Using surface balance, atomic force microscopy, and electron microscopy methods, it was revealed that the monolayer of dicetylcyclene at the surface of gold hydrosol binds nanoparticles from the subphase; the number of particles bound by the monolayer is proportional to their content in the hydrosol. The Langmuir–Blodgett films (LBF) of dicetylcyclene are prepared; their ability to bind copper ions from solution was disclosed by quartz crystal microbalance. The LBFs of dicetylcyclene containing gold nanoparticles in each layer are assembled.  相似文献   

12.
This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London–van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized.  相似文献   

13.
Pickering stabilization is a facile method to create composite colloidal particles. Inorganic colloidal SiO2 nanoparticles are often used as the stabilizer for particles instead of the more common amphiphilic surfactants. Here the use of this approach in radical‐mediated thiol‐ene suspension polymerizations using monomers 1,3,5‐triallyl‐1,3,5‐triazine‐2,4,6(1H,3H,5H)‐trione (TTT) and pentaerythritol tetrakis (3‐mercaptopropionate) (PETMP) is described. The resulting micron‐sized crosslinked poly(thioether) colloidal particles are coated with 80 nm silica nanoparticles. The addition of a small amount of various costabilizers is examined (hexadecane, cetyl alcohol and toluene), and while all yielded particles, cetyl alcohol provide more consistent results. Scanning electron microscopy and thermal analysis of the composite particles demonstrate morphologies that are consistent with a raspberry‐like structure. No significant changes to the glass transition temperature are observed, which is consistent with the silica nanoparticles being located at the surface of the polymer particles.  相似文献   

14.
Cationic polymers exhibit high cytotoxicity via strong interaction with cell membranes. To reduce cell membrane damage, a hydrophilic polymer is introduced to the cationic nanoparticle surface. The hydrophilic polymer coating of cationic nanoparticles resulted in a nearly neutral nanoparticle. These particles are applied to mouse fibroblast (3T3) and human cervical adenocarcinoma (Hela) cells. Interestingly, nanoparticles with a long cationic segment decrease cell activity regardless of cell type, while those with a short segment only affect 3T3 cell activity at lower concentrations less than 500 µg mL?1. Most nanoparticles are located inside 3T3 cells but on the cell membrane of Hela cells. The short cationic nanoparticle shows negligible cell membrane damage despite its high accumulation on Hela cell membranes. Cell activity changed by hydrophilic polymer‐coated cationic nanoparticles is caused by incorporated nanoparticle accumulation in the cells, not cell membrane damage. To suppress the cytotoxicity from the cationic polymer, cationic nanoparticle needs to completely cover with hydrophilic polymer so as not to exhibit the cationic effect and applies to cell with low concentrations to reduce the nonselective cytotoxicity from the cationic polymer.  相似文献   

15.
Summary: In this study it is presented the synthesis and the characterization of Fluorescent-Magnetic Nanostructures based on polymer-quantum dots conjugates. Polyvinyl alcohol (PVA) was used as the capping-ligand for the preparation of CdxMn1-xS semiconductor nanocrystals via aqueous colloidal chemistry. Different substitution ratios of Cd2+ by Mn+2 ions were investigated aiming at the formation of stable nanoparticles with photo-luminescent and semi-magnetic properties. UV-visible spectroscopy (UV-vis), photoluminescence spectroscopy (PL), Electric Paramagnetic Resonance Spectroscopy (EPR), and transmission electron microscopy (TEM) were used to characterize the formation and the relative stability of CdxMn1-xS nanoparticles. The results have showed the influence of the Mn2+partially replacing Cd2+ in the optical behavior of the quantum dots (QDs) produced. In addition, the CdxMn1-xS QDs have evidenced luminescent and semi-magnetic properties. Thus, the biocompatible water-soluble polymer was effective as ligand for synthesizing and stabilizing QDs conjugates with properties allowing them to be potentially applied as imaging and labeling probes in the biomedical field.  相似文献   

16.
Superparamagnetic nanoparticles were prepared by coprecipitation of ferrous (Fe(2+)) and ferric (Fe(3+)) aqueous solution by a base. Nanomagnetite particles were coated with poly(St/PEG-EEM/DMAPM) and poly(St/PEG-MA/DMAPM) layer by emulsifier-free emulsion polymerization. Chemical structure of nanoparticles was characterized by both FTIR and (1)H NMR. Particle morphologies were determined by Zeta Sizer, DLS, XRD and SAXS. Structural analysis showed that after polymer coating nanomagnetite particles kept their superparamagnetic property. Besides the synthesized magnetites, polymer coated forms of these particles are more biocompatible, well dispersable and uniform. These properties make them a very strong candidate for bioengineering applications, such as bioseparation, gene transfer.  相似文献   

17.
To improve design processes in the field of nanomedicine, in vitro characterization of nanoparticles with systematically varied properties is of great importance. In this study, surface sensitive analytical techniques were used to evaluate the responsiveness of nano-sized drug-loaded polyelectrolyte complexes when adsorbed to model lipid membranes. Two bioreducible poly(amidoamine)s (PAAs) containing multiple disulfide linkages in the polymer backbone (SS-PAAs) were synthesized and used to form three types of nanocomplexes by self-assembly with human insulin, used as a negatively charged model protein at neutral pH. The resulting nanoparticles collapsed on top of negatively charged model membranes upon adsorption, without disrupting the membrane integrity. These structural rearrangements may occur at a cell surface which would prevent uptake of intact nanoparticles. By the addition of glutathione, the disulfide linkages in the polymer backbone of the SS-PAAs were reduced, resulting in fragmentation of the polymer and dissociation of the adsorbed nanoparticles from the membrane. A decrease in ambient pH also resulted in destabilization of the nanoparticles and desorption from the membrane. These mimics of intracellular environments suggest dissociation of the drug formulation, a process that releases the protein drug load, when the nanocomplexes reaches the interior of a cell.  相似文献   

18.
Recently, it has been proved that quantum dots (QDs) hold the potential to be used in the bioanalysis as fluorescent probes for their many unique optical properties. In this paper, immunofluorescence assay, an integration of particle-based immunoassays and fluorescent QD-probes, was constructed. Firstly, high quality CdSe/ZnS QDs were prepared. Then after being water-solubilized by amphiphilic polymer based on self-assembling, the QDs were labeled by immunoglobulin G (IgG) antibody. At the same time, both carboxyl-polystyrene (PS) and magnetic carboxyl-PS microspheres were prepared and coated by antigens. The antigen sensitized PS microspheres were specifically captured by the QD-IgG bioconjugates based on the antibody-antigen reaction, which was confirmed by the immunofluorescence test in vitro. The sensitivity of current assay was tested by sandwich immunofluorescence assay using human alpha fetoprotein (AFP) as antigen model. The detection limit of AFP antigen is 4.9 ng/mL.  相似文献   

19.
Optimal conditions were found for the preparation of copper nanoparticles in aqueous solution via reduction of copper(II) ions with hydrazine hydrate. The effects of ligand environment of copper(II) in the initial solution (hydrate, ammonia, citrate, and glycine complexes), concentration, pH, surfactants, temperature, and mode of heating were examined. The obtained colloidal systems were studied by optical spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, and atomic force microscopy. The examined colloids were found to contain generally spherical copper nanoparticles with a diameter of about 10 nm, which were coated with a copper(I) or copper(II) oxide and hydroxide film.  相似文献   

20.
以表面包敷有反应型的表面活性剂NaUA(十一烯酸钠)的Fe3O4磁性胶体粒子为种子,运用无皂乳液聚合方法原位制备出Fe3O4P(NaUAStBA)核壳纳米磁性复合粒子.Fe3O4磁性胶体粒子的粒径为10nm左右.IR和TG结果分析表明,苯乙烯、丙烯酸酯和NaUA在Fe3O4粒子的表面发生了聚合反应,形成P(NaUAStBA);TEM和激光粒度分析仪测试结果显示,Fe3O4P(NaUAStBA)复合粒子具有核壳结构而且粒子分布均匀、平均粒径60nm;TG测试的结果表明,NaUA在Fe3O4粒子的包覆率为13.83%,P(NaUAStBA)共聚物的包覆率71.85%;振动样品磁强仪(VSM)测试的磁滞回线则表明由无皂乳液聚合得到的Fe3O4P(NaUAStBA)复合粒子具有超顺磁性,可避免磁性微球在磁场中的团聚.另外,合成的磁性胶乳可稳定存放数月.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号