首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
姚灿  王育人  蓝鼎  段俐  康琦 《中国物理快报》2008,25(10):3811-3814
The self-assembling process near the three-phase contact line of air, water and vertical substrate is widely used to produce various kinds of nanostructured materials and devices. We perform an in-situ observation on the selfassembling process in the vicinity of the three phase contact line. Three kinds of aggregations, i.e. particle-particle aggregation, particle-chain aggregation and chain-chain aggregation, in the initial stage of vertical deposition process are revealed by our experiments. It is found that the particle particle aggregation and the particle-chain aggregation can be qualitatively explained by the theory of the capillary immersion force and mirror image force, while the chain-chain aggregation leaves an opening question for the further studies. The present study may provide more deep insight into the self-assembling process of colloidal particles.  相似文献   

2.
High-quality colloidal crystals have been prepared through a novel capillary-enhanced process, which includes both the characteristics of a sedimentation method and a capillary method. The multiple capillary forces driving the formation of colloidal crystals are composed of a primary capillary force and a secondary capillary force controlled by the ambient humidity. When the particles on the surface of the substrate transform into a gel-like layer in a high-humidity condition during the final step of the evaporative process, the secondary capillary force will be effective and fine tune the relative position between the neighboring particles in the microarray to decrease the amount of defects efficiently. Moreover, the close-packed structure can also be fabricated in a large area. Perfect colloidal crystals can easily be prepared in a short processing time by simple operation steps with the assistance of enhanced secondary capillary forces. PACS 42.70.Qs; 68.03.Cd; 68.65.Ac  相似文献   

3.
In this study, molecular dynamics (MD) was used to simulate the rapid solidification process of Ni47Co53 and Ni48Co52 alloys at a cooling rate of 1012 K/s. The effects of HCP on the formation of twin boundaries and dislocations in two Ni–Co alloys are studied. It is found that the difference of HCP clusters is the main effect that producing discrepancies on microstructure of two alloys. The number of HCP clusters accounted for 9.23% in Ni47Co53 alloy. They are regularly arranged to form the number of single-layer twin boundaries, and each twin boundary ends in a dislocation. The FCC and HCP structures coexist in the same atomic layers, which is easy to create dislocations. The relatively standard FCC crystal and only 0.32% HCP clusters are formed in Ni48Co52 alloy at 300 K. That small amount of HCP clusters are dispersed on the surface, and cause the formation of dislocation in the border with FCC clusters.  相似文献   

4.
The effect of excess surfactants (oleic acids) in a colloidal solution on the adsorption behavior of 9.5-nm-sized, sterically stabilized iron oxide (γ-Fe2O3) nanoparticles on hydrogen terminated Si (Si:H) substrates during a dip-coating process is examined. While the particle coverage follows a type of Langmuir adsorption isotherm as initially increasing and subsequently saturating with increasing particle concentration, it also critically depends on the excess surfactant concentration in the solution. For instance, it is noted that by adding the oleic acids from 0.06 to 2.80 × 1018 ml−1 in the solution with 4.65 × 1013 ml−1 particle concentration, the coverage is gradually reduced from 0.42 to 0.25. In addition, increasing surfactant concentration distinctly changes the morphology of a self-assembled particle layer from densely distributed smaller clusters to sparsely connected, larger ones with enlarged space. The reduced coverage and enlarged cluster size with increasing oleic acid concentration are explained by the reduced interaction energy between particle and substrate and the increased capillary force between particles.  相似文献   

5.
The structures of suspensions comprised of magnetic and nonmagnetic particles in magnetic fields are studied using two-dimensional Monte Carlo simulations. The magnetic interaction among magnetic particles, magnetic field strength, and concentrations of both magnetic and nonmagnetic particles are considered as key influencing factors in the present work. The results show that chain-like clusters of magnetic particles are formed along the field direction. The size of the clusters increases with increasing magnetic interaction between magnetic particles, while it keeps nearly unchanged as the field strength increases. As the concentration of magnetic particles increases, both the number and size of the clusters increase. Moreover, nonmagnetic particles are found to hinder the migration of magnetic ones. As the concentration of nonmagnetic particles increases, the hindrance on migration of magnetic particles is enhanced.  相似文献   

6.
We report an optical and atomic force microscopic study of interactions between charged polystyrene spheres at a water-air interface. Optical observations of bonded particle clusters and formation of circular chainlike structures at the interface demonstrate that the interaction potential is of dipole origin. Atomic force microscope phase images show patchy domains on the colloidal surface, indicating that the surface charge distribution is not uniform as is commonly believed. Such surface heterogeneity introduces in-plane dipoles, leading to an attraction at short interparticle distances.  相似文献   

7.
The elastic and capillary interactions between a pair of colloidal particles trapped on top of a nematic film are studied theoretically for large separations d. The elastic interaction is repulsive and of quadrupolar type, varying as d-5. For macroscopically thick films, the capillary interaction is likewise repulsive and proportional to d-5 as a consequence of mechanical isolation of the system comprised of the colloids and the interface. A finite film thickness introduces a nonvanishing force on the system (exerted by the substrate supporting the film) leading to logarithmically varying capillary attractions. However, their strength turns out to be too small to be of importance for the recently observed pattern formation of colloidal droplets on nematic films.  相似文献   

8.
Microscopy techniques are suitable to obtain structural information of colloidal clusters with high resolution, but yield only a two dimensional projection of the objects. When imaging finite size objects with fractal properties, such as clusters of colloidal particles, this projection process has to be taken into account for the calculation of the fractal dimension. In this paper we present a technique to calculate the fractal dimension of finite size clusters with fractal properties using grayscale projections such as images obtained by X-ray microscopy. The grayscales are interpreted as different occupation counts within a projection. It is shown, that the radial distribution of these occupation counts varies with the fractal dimension d of the cluster. Using the radius of maximum occupation probability the fractal dimension up to 2.2 of finite size clusters can be calculated. The theoretical predictions are verified by test calculations employing numerically generated clusters.  相似文献   

9.
KCI对银胶形态影响的电子显微镜研究   总被引:2,自引:0,他引:2       下载免费PDF全文
借助透射电子显微镜研究了银胶中加入KCl时对银胶的影响。发现KCl的加入引起了银原子的输运,使胶体颗粒变大,表面上覆上一层疏松原子集团。同时引起胶体发生链状凝聚。和加入吡啶引起的银胶的变化做了比较,表明KCl和吡啶对银胶的作用结果有很大差异。同时也讨论了这些差异对表面增强喇曼散射信号的影响。 关键词:  相似文献   

10.
In this paper, we report the observation of an induced dichroism in an ionic silver cluster-doped glass, under the interaction of a CW high-power (Pmax8 W) Ar+ laser beam. It is found that, as a result of the photo-thermal interaction, a dichroism due to the formation of chain-like silver clusters is induced. Because of the electromagnetic interaction, the orientation of these chain-like structures is related, in general, to the direction of the laser beam polarization. The effect is seen in the regime, where the laser beam power is increased rapidly. In this regime micrometer size (d2 m) clusters are generated on the surface of the sample. In this report, we discuss the production of such large silver clusters as a result of changing of the initial ionic clusters to the neutral ones and then aggregation of the generated small neutral clusters under the supersaturation condition. PACS 61.46.+w; 78.90.+t; 33.55.-b; 36.40.Vz; 36.40.Mn; 42.70.Ce  相似文献   

11.
Kazuya Okada 《Molecular physics》2018,116(18):2300-2309
In the previous study, from the viewpoint of surface modification technology, we considered a quasi-2D suspension in thermodynamic equilibrium in order to investigate the characteristics of magnetic cubic particles on a material surface. The present study has been expanded to include 3D Monte Carlo simulations of a suspension of magnetic cubic particles in order to discuss a regime change in the structures of cubic particle aggregates. We attempt to elucidate the dependence of a regime change in the aggregate structures on a variety of factors. The main results obtained here are summarised as follows. If the magnetic interaction strength is sufficiently large, closely packed clusters are formed by repeat and expansion of a cluster unit composed of eight particles, which may be the most preferred configuration as it gives rise to a minimum energy. A regime change in the internal structure of aggregates appears in a narrow range with increasing magnetic interaction strength. As the applied magnetic field strength is increased, closely packed clusters collapse and are transformed into wall-like clusters that are formed along the magnetic field direction. An increase in the volumetric fraction of particles induces a regime change from thick chain-like clusters to the formation of wall-like clusters.  相似文献   

12.
Gold films with a nominal thickness of 5–40 monolayers were grown on dielectric substrates and imaged by scanning force microscopy (SFM). The films originally consisted of well-separated or densely packed clusters. During imaging in contact mode, the morphology of the films changed drastically. At low coverage, i.e. Θ<10 monolayers, the well-known stripes originating from mobile clusters, eventually accumulated into larger aggregates, were observed. In contrast, at larger coverage, highly ordered structures consisting of one-dimensional wires evolved during scanning. They often were parallel with equal separation, i.e. well-defined periodicity, over distances of several μm. Typically, the wires were 5–10 nm high and 50–100 nm wide. Investigations of Au films prepared at varying temperature on different dielectric substrates allow us to suggest a self-assembling mechanism for wire formation in which gold is periodically collected by the SFM tip and redeposited as soon as a critical amount is reached. Received: 22 February 1999 / Accepted: 2 March 1999 / Published online: 7 April 1999  相似文献   

13.
In this work we characterize the configurational space of a short chain of colloidal particles as a function of the range of directional and heterogeneous isotropic interactions. The individual particles forming the chain are colloids decorated with patches that act as interaction sites between them. We show, using computer simulations, that it is possible to sample the relative probability of occurrence of a structure with a sequence in the space of all possible realizations of the chain. The results presented here represent a first attempt to map the space of possible configurations that a chain of colloidal particles may adopt. Knowledge of such a space is crucial for a possible application of colloidal chains as models for designable self-assembling systems.  相似文献   

14.
The concept of effective depletion forces between two fixed big colloidal particles in a bath of small particles is generalized to a nonequilibrium situation where the bath of small Brownian particles is flowing around the big particles with a prescribed velocity. In striking contrast to the equilibrium case, the nonequilibrium forces violate Newton's third law; they are nonconservative and strongly anisotropic, featuring both strong attractive and repulsive domains.  相似文献   

15.
Experimental and theoretical studies were carried out to investigate the spatial distribution of colloidal particles in magnetic fluids formed under the influence of magnetophoresis and gradient diffusion in a strong magnetic field. Several theoretical models, describing the equilibrium concentration profiles for rigid chain-like and quasispherical aggregates, are discussed. The experiment was made for four samples of magnetic fluids, differing in the average diameter of magnetic particles and the width of the particle size distribution. The analysis of the experimental data shows that the aggregates essentially change the concentration profile, making it nonlinear even in small (2 mm) magnetic fluid samples. Good agreement between the experimental and theoretical curves is observed in the case when the aggregates contain on the average 40-50 particles. The average diameter of single particles, calculated from the concentration profile curves, coincides with the average diameter, found from the magnetogranulometric analysis.  相似文献   

16.
Recent work on charged colloidal suspensions with very low levels of added salt has suggested that although pairs of the colloidal particles repel, clusters of the particles attract. Motivated by this, we study simple model particles which have many-body attractions. These attractions are generic many-body attractions and are not calculated for any specific colloidal suspension. We find that many-body attractions can stabilize solid phases at low pressures but that the liquid phase is either completely absent from the equilibrium phase diagram or present only within a small region of parameter space.  相似文献   

17.
Modeling of the precise fabrication in the self-assembling of particles is studied using the nonlinear Langevin equation system. The numerical simulation showed a marked ordering of the particles as a function of time after some induction period. The abnormally enlarged fluctuation was found around the start of the evident ordering. After the fluctuation, a sudden increase of the cluster size was observed. The results corresponded well to the dynamics due to the formation of the critical cluster. The shape of the critical cluster around the enlarged fluctuation was not compact and showed fractal-like structures. The fluctuation of the cluster size around the formation of the critical cluster was explained by the anomalous fluctuation theorem for the generalized Langevin equation. The characterization of the stochastic dynamics of the critical clusters rationalized the concept of dynamic templating for the fabrication technique of the self-assembling of nanoparticles, that is, the structural constraint on the particle assembly by externally adding the resonance frequencies that match with the localized nonlinear vibrational modes of the target structures originating from thermal (Brownian) activation.  相似文献   

18.
We use substrates chemically micropatterned with anionic and cationic regions to govern the deposition of charged colloidal particles. The direct observation of the colloidal assembly suggests that this process includes two steps: an initial patterned attachment of colloids to the substrate and an additional ordering of the structure upon drying. The driving forces of the process, i.e. , screened electrostatic and lateral capillary interactions, are discussed. This approach makes it possible to fabricate complex, high-resolution two-dimensional arrays of colloidal particles.  相似文献   

19.
本文报道超声波在磁性液体中的传播特性,首先研究了磁化状态建立与消失的弛豫过程,弛豫时间约20min,为了保证平衡状态下进行测量,所有数据均为附加磁场60min后进行的测量,然后在f=4HMz下,测量了φ=0,π/2的声速与磁场的关系,声速与磁性液体中磁性颗粒浓度的关系,对有关理论进行了解释。 关键词:  相似文献   

20.
The self-assembly processes of gold nanoparticles on nanometre-step-patterned Si surface and polished Si surface are investigated by the convective self-assembly method. The convective self-assembly method is used to deposit the colloids dispersed in benzene onto the substrates. The SEM results show that the configurations of the gold arrays depend on the surface morphology of the substrates. On the nanometre-step-patterned Si surface, the nanoparticles self assemble into parallel lines, and the distance between the neighbouring lines is around 35 nm. On the polished Si surface the nanoparticles form compact domains. In each domain the particles are closepacked in a two-dimensional hexagonal superlattice and are separated by uniform distances. The analysis shows that on the nanometre-step-patterned Si surface, the steps play critical roles in the self-assembly process of gold nanoparticles. The capillary force from the steps drives the particles to lines along the steps. Therefore, the particles tend to self-assemble into one-dimensional line structures when the solvent evaporates. For the polished Si substrate there is a little difference that the particles form two-dimensional hexagonal superlattices without the directional confinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号