首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectroscopic behavior of rhodamine 6G (R6G) dye intercalated in layered hexaniobate K4Nb6O17 was investigated. R6G cations were intercalated into the niobate through displacement of preintercalated alkylammonium ions. Powder X-ray diffraction and elemental analysis indicated that the dye molecules were densely accommodated in the interlayer spaces of niobate. The spectroscopic behavior of intercalated R6G was characterized by humidity-dependent aggregation at room temperature. The dye molecules were present dominantly as monomers under humid conditions (93% relative humidity (RH)), while they formed dimers under relatively dry conditions (20% RH). The aggregation-deaggregation of dye occurred reversibly depending on the humidity. The reversible aggregation was not accompanied by a large alteration of the interlayer structure of the sample, because only a small amount of water was adsorbed/desorbed with a small change in the basal spacing of the intercalation compound during the humidity change.  相似文献   

2.
Yan B  Maggard PA 《Inorganic chemistry》2006,45(12):4721-4727
The layered molybdate [M2(pzc)2(H2O)x][Mo5O16] (I: M = Ni, x = 5.0; II: M = Co, x = 4.0; pzc = pyrazinecarboxylate) hybrid solids were synthesized via hydrothermal reactions at 160-165 degrees C. The structures were determined by single-crystal X-ray diffraction data for I (Cc, Z = 4; a = 33.217(4) A, b = 5.6416(8) A, c = 13.982(2) A, beta = 99.407(8) degrees , and V = 2585.0(6) A3) and powder X-ray diffraction data for II (C2/c, Z = 4; a = 35.42(6) A, b = 5.697(9) A, c = 14.28(2) A, beta = 114.95(4) degrees , and V = 2614(12) A3). The polar structure of I contains new [Ni2(pzc)2(H2O)5]2+ double layers that form an asymmetric pattern of hydrogen bonds and covalent bonds to stair-stepped [Mo5O16]2- sheets, inducing a net dipole moment in the latter. In II, however, the [Co2(pzc)2(H2O)4]2+ double layers have one less coordinated water and subsequently exhibit a symmetric pattern of covalent and hydrogen bonding to the [Mo5O16]2- sheets, leading to a centrosymmetric structure. Thermogravimetric analyses and powder X-ray diffraction data reveal that I can be dehydrated and rehydrated with from 0 to 6.5 water molecules per formula unit, which is coupled with a corresponding contraction/expansion of the interlayer distances. Also, the dehydrated form of I can be intercalated by approximately 4.3 H2S molecules per formula unit, but the intercalation by pyridine or methanol is limited to less than one molecule per formula unit.  相似文献   

3.
A number of interesting photoluminescence properties of titanate layered oxide intercalated with hydrated Eu3+ have been demonstrated. Photoluminescence intensity of Eu3+ decreased rapidly with time during irradiation by UV light having energy higher than the band gap energy of the host TiO (Ti(1.81)O4) layer. This is presumably due to the decrease in energy transfer from the host TiO layer to Eu3+ as a result of the change in the hydration state of water molecules surrounding Eu3+, which is caused by the hole produced in the TiO valence band. When irradiation was discontinued, the emission intensity gradually recovered. The recovery time increased when the water in the interlayer is removed by heat treatment. This indicates that the state of interlayer water changes during irradiation and returns to its initial state after discontinuation of irradiation. The excitation spectra changed drastically at any given wavelength upon irradiation with UV light. A comparison of the excitation spectra before and after irradiation reveals that only the excitation peak at around the irradiation wavelength decreased upon irradiation, as in the case of spectral hole burning. The hydration state of water molecules surrounding Eu3+ presumably changes depending on the irradiation wavelength, leading to the above spectral change because the Eu/TiO film has a superlattice structure producing holes with different energies.  相似文献   

4.
This paper describes a systematic study on the thermal polymerization of both pristine 4-vinylbenzenesulfonic anion (VBS) and intercalated VBS in the two-dimensional (2D) gallery of Ni-Al layered double hydroxide (VBS/Ni-Al-LDH), by virtue of combining experimental and theoretical investigations. In situ FT-IR, in situ high-temperature X-ray diffraction (HT-XRD), UV-vis absorption spectroscopy, TG-DTA and elemental analysis were used to study the polymerization process, and it was found that the polymerization of VBS/Ni-Al-LDH occurs at ca. 150-170 degrees C, at least 40 degrees C lower than that of the pristine VBS, indicating that the layered structure of LDH is favorable for thermal polymerization of VBS. Therefore, this layered inorganic material may have potential application as a "molecular reactor" for enhancing the efficiency of polymerization reaction. Furthermore, the sheet-like polymerization product was obtained with the LDHs lamella as template. For better understanding the structure and arrangement of intercalated VBS and the polymerization product between the layers of Ni-Al-LDH, molecular dynamics (MD) simulation method was employed. The simulation results of hydration energies show that there are two relatively stable stages upon the increase of the number of interlayer water molecules. VBS molecules exhibit a tendency from tilted to vertical orientation with respect to the layers as the interlayer water content increases. Compared with the experimental results, the calculated interlayer spacing is more severely affected by interlayer water content. Finally, a typical tetramer product of VBS intercalated LDH was studied and the simulated equilibrium interlayer spacing is consistent with the experimental result of in situ HT-XRD. Based on the combination of experimental and theoretical studies on the interlayer polymerization system, the aim of this work is to deeply investigate the differences in thermal polymerization process between pristine monomers and intercalated ones in the gallery of LDHs, and to give detailed information of the arrangement and swelling behavior of guest molecules confined between the sheets of host layers.  相似文献   

5.
Members of the layered rare-earth hydroxides (LRHs) family with the generalized formula (Y(1-x)Ln(x))(2)(OH)(5)NO(3)·nH(2)O (Ln = Tb, Eu; 0% ≤x≤ 100%) (named as YTb-LRHs, YEu-LRHs) have been synthesized via a hydrothermal route. Crystal structures and elemental compositions have been investigated by X-ray diffraction (XRD), elemental analysis, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). These results show that Ln(3+) species are successfully incorporated into the LRH host lattice to form layered hydroxide solid solutions. The YTb-LRHs and YEu-LRHs samples exhibit well-defined photoluminescence. The color of the luminescence can be tuned by changing the concentration of Ln(3+). Furthermore, the ternary YTbEu-LRH system was also synthesized, an example of the host layers containing variable types of the lanthanide cations. This provides the possibility to tune the chemical composition and the luminescent properties of the lanthanide species with the flexibility of intercalation hosts for potential applications in luminescent materials and field emission displays.  相似文献   

6.
Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.  相似文献   

7.
The adsorption of pyrimidine (PM) on natural montmorillonite and sepiolite from Turkey was investigated by FT-IR spectroscopy. The intercalation of PM within montmorillonite has been shown by X-ray diffraction to increase the interlayer spacing. The spectroscopic results indicate that PM molecules adsorbed on sepiolite are coordinated to Lewis acidic centers or surface hydroxyls by H-bonding interaction through one of the pyrimidine ring nitrogen lone pairs. Moreover, some of the adsorbed PM molecules may enter the interior channels of the sepiolite structure and replace zeolitic water. The intercalated PM molecules within montmorillonite are coordinated to exchangeable cations directly or indirectly through water bridges.  相似文献   

8.
Multilayered manganese oxide nanocomposites intercalated with strong (poly(diallyldimethylammonium) chloride, PDDA) and weak (poly(allylamine hydrochloride), PAH) polyelectrolytes can be produced on polycrystalline platinum electrode in a thin film form by a simple, one-step electrochemical route. The process involves a potentiostatic oxidation of aqueous Mn2+ ions at around +1.0 V (vs Ag/AgCl) in the presence of polyelectrolytes. Fully charged PDDA polycations are accommodated tightly in the interlayer space by electrostatic interaction with negative charges on the manganese oxide layers, leading to an interlayer distance of 0.97 nm. The layered film prepared with PAH has a larger polymer content (PAH/Mn molar ratio of 0.98) than that (PDDA/Mn molar ratio of 0.43) made with PDDA because of the smaller charging degree of PAH, exhibiting a larger interlayer distance (1.19 nm). The interlayer PAH contains neutral (-NH2) and positively charged (-NH3(+)) amine groups, and the -NH3(+) groups are associated with Cl- (to generate -NH3(+) Cl- ion pairs) as well as the negatively charged manganese oxide layers. Both polyelectrolytes once incorporated were not ion exchanged with small cations in solution. The layered structure of PDDA/MnO(x) was collapsed during the reduction process in a KCl electrolyte solution, accompanying an expansion of the interlayer as a result of incorporation of K+ ions for charge neutrality. On the contrary, the layered PAH/MnO(x) film showed a good electrochemical response due to the redox reaction of Mn3+/Mn4+ couple with no change in the structure. X-ray photoelectron spectroscopy revealed that, in this case, excess negative charges generated on the manganese oxide layers upon reduction can be balanced by the protons being released from the -NH3(+) Cl- sites in the interlayer PAH; the Cl- anions becoming unnecessary are inevitably excluded from the interlayer, and vice versa upon oxidation.  相似文献   

9.
The intercalation chemistry of layered αI modification of vanadyl phosphate and vanadyl phosphate dihydrate is reviewed. The focus is on neutral molecular guests and on metal cations used as guest species. The basic condition for the ability of the neutral molecules to be intercalated into vanadyl phosphate is a presence of an electron donor atom in them. The most commonly used guest compounds are those containing oxygen, nitrogen or sulfur as electron donor atoms. Regarding the molecules containing oxygen, various compounds were used as molecular guests starting from water to alcohols, ethers, aldehydes, ketones, carboxylic acids, lactones, and esters. An arrangement of the guest molecules in the interlayer space is discussed in connection with the data obtained by powder X-ray diffraction, thermogravimetry, IR and Raman spectroscopies, and solid-state NMR. In some cases, the local structure was suggested on the basis of quantum chemical calculations. Besides of those O-donor guests, also N-donor guests such as amines, nitriles and nitrogenous heterocycles and S-donor guests such as tetrathiafulvalene were intercalated into VOPO4. Also intercalates of complexes like ferrocene were prepared. Intercalation of cations is accompanied by a reduction of vanadium(V) to vanadium(IV). In this kind of intercalation reactions, an iodide of the intercalated cation is often used as it serves both as a mild reduction agent and as a source of the intercalated species. Intercalates of alkali metals, hydronium and ammonium were prepared and characterized. In the case of lithium and sodium intercalates, a staging phenomenon was observed. These redox intercalated vanadyl phosphates undergo ion exchange reactions which are discussed from the point of the nature of cations involved in the exchange. Vanadyl phosphates in which a part of vanadium atom is replaced by other metals are also briefly reviewed.  相似文献   

10.
郭宪吉  侯文华  陈静  许爱荣 《化学学报》2006,17(17):1770-1774
用一种简便快速方法合成了一系列长链有机胺插层V2O5化合物. 用粉末X射线衍射(XRD)、红外光谱(FT-IR)、漫反射紫外-可见光谱(DR UV-VIS)等手段对插层产品的结构进行了表征. 除了正十六胺插层V2O5产品外, 其它长链烷胺插层V2O5产品的层间距d001与长链烷胺碳数n之间具有良好的线性关系: d001=0.160nC+0.731 nm. 正十六胺与V2O5反应后生成两个插层相, 一个相的层间距d001为4.01 nm, 另一相的d001为3.20 nm. 此外, 研究了手性钛的螯合物Ti[(OC2H4)3N][OCH(CH3)2] (记为TEAIP)在V2O5层间的插层行为, 得到相应的插层产品.  相似文献   

11.
The synthesis process and crystal structure evolution for a family of stoichiometric layered rare-earth hydroxides with general formula Ln(8)(OH)(20)Cl(4) x nH(2)O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y; n approximately 6-7) are described. Synthesis was accomplished through homogeneous precipitation of LnCl(3) x xH(2)O with hexamethylenetetramine to yield a single-phase product for Sm-Er and Y. Some minor coexisting phases were observed for Nd(3+) and Tm(3+), indicating a size limit for this layered series. Light lanthanides (Nd, Sm, Eu) crystallized into rectangular platelets, whereas platelets of heavy lanthanides from Gd tended to be of quasi-hexagonal morphology. Rietveld profile analysis revealed that all phases were isostructural in an orthorhombic layered structure featuring a positively charged layer, [Ln(8)(OH)(20)(H(2)O)(n)](4+), and interlayer charge-balancing Cl(-) ions. In-plane lattice parameters a and b decreased nearly linearly with a decrease in the rare-earth cation size. The interlamellar distance, c, was almost constant (approximately 8.70 A) for rare-earth elements Nd(3+), Sm(3+), and Eu(3+), but it suddenly decreased to approximately 8.45 A for Tb(3+), Dy(3+), Ho(3+), and Er(3+), which can be ascribed to two different degrees of hydration. Nd(3+) typically adopted a phase with high hydration, whereas a low-hydration phase was preferred for Tb(3+), Dy(3+), Ho(3+), Er(3+), and Tm(3+). Sm(3+), Eu(3+), and Gd(3+) samples were sensitive to humidity conditions because high- and low-hydration phases were interconvertible at a critical humidity of 10%, 20%, and 50%, respectively, as supported by both X-ray diffraction and gravimetry as a function of the relative humidity. In the phase conversion process, interlayer expansion or contraction of approximately 0.2 A also occurred as a possible consequence of absorption/desorption of H(2)O molecules. The hydration difference was also evidenced by refinement results. The number of coordinated water molecules per formula weight, n, changed from 6.6 for the high-hydration Gd sample to 6.0 for the low-hydration Gd sample. Also, the hydration number usually decreased with increasing atomic number; e.g., n = 7.4, 6.3, 7.2, and 6.6 for high-hydration Nd, Sm, Eu, and Gd, and n = 6.0, 5.8, 5.6, 5.4, and 4.9 for low-hydration Gd, Tb, Dy, Ho, and Er. The variation in the average Ln-O bond length with decreasing size of the lanthanide ions is also discussed. This family of layered lanthanide compounds highlights a novel chemistry of interplay between crystal structure stability and coordination geometry with water molecules.  相似文献   

12.
Organically modified clay minerals with high thermal stability are critical for synthesis and processing of clay-based nanocomposites. Two series of organo-montmorillonites have been synthesized using surfactants with different alkyl chain length. The organo-montmorillonites were characterized by X-ray diffraction and differential thermogravimetry, combining with molecule modelling. For surfactant with relatively short alkyl chain, the resultant organo-montmorillonite displays a small maximum basal spacing (ca. 1.5?nm) and most surfactants intercalate into montmorillonite interlayer spaces as cations with a small amount of surfactant molecules loaded in the interparticle pores with ??house-of-cards?? structure. However, for surfactant with relatively long alkyl chain, the resultant organo-montmorillonite displays a large maximum basal spacing (ca. 4.1?nm) and the loaded surfactants exist in three formats: intercalated surfactant cations, intercalated surfactant molecules (ionic pairs), and surfactant molecules in interparticle pores. The surfactant molecules (ionic pairs) in interparticle pores and interlayer spaces will be evaporated around the evaporation temperature of the neat surfactant while the intercalated surfactant cations will be evaporated/decomposed at higher temperature.  相似文献   

13.
聚苯胺/H2W2O7层状复合材料的制备研究   总被引:1,自引:0,他引:1  
以层状钨基氧化物(H2W2O7)为无机主体, 用正庚胺改性后的正庚胺/H2W2O7复合物(HTT)为中间体, 通过离子交换、层间O2引发聚合等步骤成功制备了聚苯胺/H2W2O7层状复合材料(PANI/H2W2O7). X射线衍射、扫描电子显微镜、红外光谱及差热分析结果表明: 聚苯胺分子已成功地嵌入H2W2O7层间, 层状结构没被破坏, 层间距变至1.19 nm; 聚苯胺的嵌入还大大提高了材料的热稳定性. 讨论了无机主体与有机客体之间的相互作用、聚苯胺在层间的排布形式及苯胺和聚苯胺插入层间的反应机理.  相似文献   

14.
Manganese oxide species (MnO(x)) have been intercalated within the gallery spaces of Mg-Al layered double hydroxides (LDHs). Synthesis of these materials was achieved by ion-exchange of the LDH-nitrate precursor with permanganate anion followed by reduction with organic reagents, such as glucose, ethanol, and ascorbic acid. Elemental analysis, X-ray diffraction, FT-IR spectroscopy, Raman spectroscopy, HR-TEM, and N(2) sorption analyses have been used to characterize these materials. TEM micrographs of LDH-MnO(x) materials revealed platelike morphology, characteristic of hydrotalcite-like compounds. Chemical analysis results showed that permanganate anions exchanged with nitrate anions. FT-IR and Raman spectroscopy confirmed the reduction of the permanganate anions after treatment with the organic reagents. The XRD diffraction patterns of LDH-MnO(x) revealed that the layer structure is maintained after all synthetic steps. The observed basal spacings of intercalates varied depending on the reducing agent; the largest expansion was 9.93A, corresponding to the use of ascorbic acid. The specific surface areas were also affected according to the organic reagent used, indicating that the structural modifications in the interlayer domain observed by X-ray diffraction also influence the microtextural properties.  相似文献   

15.
The interlayer space of the highly charged synthetic Na-Mica-4 can be modified by ion-exchange reactions involving the exchange of inorganic Na(+) cations by surfactant molecules, which results in the formation of an organophilic interlayer space. The swelling and structural properties of this highly charged mica upon intercalation with n-alkylammonium (RNH(3))(+) cations with varying alkyl chain lengths (R = C12, C14, C16, and C18) have been reported. The stability, fine structure, and evolution of gaseous species from alkylammonium Mica-4 are investigated in detail by conventional thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), in situ X-ray diffraction (XRD), and solid-state nuclear magnetic resonance (MAS NMR) techniques. The results clearly show the total adsorption of n-alkylammonium cations in the interlayer space which expands as needed to accommodate intercalated surfactants. The surfactant packing is quite ordered at room temperature, mainly involving a paraffin-type bilayer with an all-trans conformation, in agreement with the high density of the organic compounds in the interlayer space. At temperatures above 160 °C, the surfactant molecules undergo a transformation that leads to a liquid-like conformation, which results in a more disordered phase and expansion of the interlayer space.  相似文献   

16.
This paper reports on the swelling and exfoliation behavior of a layered protonic manganese oxide, H(0.13)MnO(2).0.7H(2)O, in a solution of tetrabutylammonium (TBA) hydroxide and the formation and characterizations of unilamellar two-dimensional crystallites of MnO(2). At low doses of TBA ions, layered manganese oxide was observed to undergo normal intercalation, yielding a TBA intercalated phase with a gallery height of 1.25 nm. With a large excess of TBA ions, osmotic swelling occurred, giving rise to a very large intersheet separation of 3.5-7 nm. In an intermediate TBA concentration range, the sample exhibited a broad X-ray diffraction profile with superimposed diffraction features due to intercalation and osmotic swelling. The component responsible for the broad profile was isolated by centrifuging the mixture twice at different speeds, and the recovered colloid was identified as a pile of MnO(2) nanosheets, corresponding to the individual host layer of the precursor layered manganese oxide. Observations by transmission electron microscopy and atomic force microscopy revealed high two-dimensional anisotropy with a lateral dimension of submicrometers and a thickness of approximately 0.8 nm. The nanosheet exhibited broad optical absorption with a peak at 374 nm (epsilon = 1.13 x 10(4) mol(-1) dm(3) cm(-1)). The restacking process of the colloidal MnO(2) nanosheets was followed by aging the colloid at a relative humidity of 95%. The broad diffraction pattern due to the exfoliated sheets weakened with time and eventually resolved into two sharp distinct profiles attributable to a TBA intercalation compound with an intersheet spacing of 1.72 nm and an osmotically swollen hydrate with >10 nm at a very early stage. As drying progressed, the former phase became more abundant without a change in interlayer distance, while the degree of swelling of the latter phase gradually decreased to 2.7 nm that remained unchanged on further aging. Subsequent drying at a lower humidity collapsed the 2.7 nm phase. The resulting single 1.72 nm phase was dehydrated by heating at 150 degrees C to produce a phase with a contracted interlayer spacing of 1.3 nm.  相似文献   

17.
《Vibrational Spectroscopy》2000,22(1-2):11-17
The sorption of 2,2′-biquinoline onto natural and ion-exchanged montmorillonite (Fe-, Co- or Cu-montmorillonite) and saponite from Anatolia have been investigated using FT-IR and FT-Raman Spectrometry. The intercalation of 2,2′-biquinoline within natural and ion-exchanged montmorillonite and saponite has been shown by X-ray diffraction to increase the interlayer spacing. The difference of basal spacing of air-dried clays and biquinoline treated ones shows monolayer arrangement. Raman spectroscopy was particularly useful for investigation of clay-organic interaction. Vibrational spectroscopy indicates that intercalated 2,2′-biquinoline molecules are coordinated to exchangeable cations (directly and indirectly through water bridges) and/or Lewis acid sites or as bidentate ligand.  相似文献   

18.
采用共沉淀法合成了钴铝水滑石(CoAl-LDH),将CoAl-LDH与PSS包裹的CNTs(CNTs@PSS)通过层层自组装法构筑CNTs@PSS/CoAl-LDH多层膜电极,并将其应用于葡萄糖的分析测定。X射线衍射光谱、红外光谱和SEM表明:共沉淀法合成的CoAl-LDH具有典型的水滑石特征峰及形貌。电化学阻抗谱表明:CoAl-LDH可与CNTs@PSS均匀有效地组装构筑多层膜。电化学研究表明:CNTs的引入很好地提高了CoAl-LDH修饰电极的灵敏度。研究结果表明该传感器对葡萄糖在3.0×10-6~4.98×10-4mol/L范围内呈良好的线性响应,灵敏度为1.03×10-3A.L/mol。  相似文献   

19.
Guo X  Zhu G  Sun F  Li Z  Zhao X  Li X  Wang H  Qiu S 《Inorganic chemistry》2006,45(6):2581-2587
A series of microporous lanthanide metal-organic frameworks, Tb3(BDC)(4.5)(DMF)2(H2O)3.(DMF)(H2O) (1) and Ln3(BDC)(4.5)(DMF)2(H2O)3.(DMF)(C2H5OH)(0.5)(H2O)(0.5) [Ln = Dy (2), Ho (3), Er (4)], have been synthesized by the reaction of the lanthanide metal ion (Ln3+) with 1,4-benzenedicarboxylic acid and triethylenetetramine in a mixed solution of N,N'-dimethylformamide (DMF), water, and C(2)H(5)OH. X-ray diffraction analyses reveal that they are extremely similar in structure and crystallized in triclinic space group P. An edge-sharing metallic dimer and 4 metallic monomers assemble with 18 carboxylate groups to form discrete inorganic rod-shaped building units [Ln6(CO2)18], which link to each other through phenyl groups to lead to three-dimensional open frameworks with approximately 4 x 6 A rhombic channels along the [0,-1,1] direction. A water sorption isotherm proves that guest molecules in the framework of complex 1 can be removed to create permanent microporosity and about four water molecules per formula unit can be adsorbed into the micropores. These complexes exhibit blue fluorescence, and complex 1 shows a Tb3+ characteristic emission in the range of 450-650 nm.  相似文献   

20.
Li Z  Zhu G  Guo X  Zhao X  Jin Z  Qiu S 《Inorganic chemistry》2007,46(13):5174-5178
A series of microporous lanthanide metal-organic frameworks [Ln(BTC)(DMF)(2) x H(2)O, Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), Yb (6); DMF = N,N'-dimethylformamide] with 4 x 4 x 4 x 6 x 6 x 8 topology, which is very common in the zeolite topologies, have been synthesized under mild conditions. The single-crystal X-ray diffraction analysis reveals that they exhibit the same three-dimensional (3D) architecture and crystallize in monoclinic symmetry space group C2/c. Organic and inorganic four-connected nodes link each other to form a 3D open framework. The framework contains approximate 13 Angstrom x 7 Angstrom rectangle channels along the [1,1,0] and [1,-1,0] directions, respectively. The luminescent properties of these complexes have been studied, and complex 1 shows a Tb(3+) characteristic emission in the range of 450-650 nm at room temperature. Complexes 1-5 exhibit antiferromagnetic interaction between Ln(3+) ions. The water sorption isotherm shows that about 15 water molecules per unit cell can be adsorbed into the micropores of dehydrated complex 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号