首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Elaborate chemical design is of utmost importance in order to slow down the relaxation dynamics in single‐molecule magnets (SMMs) and hence improve their potential applications. Much interest was devoted to the study of distinct relaxation processes related to the different crystal fields of crystallographically independent lanthanide ions. However, the assignment of the relaxation processes to specific metal sites remains a challenging task. To address this challenge, a new asymmetric Dy2 SMM displaying a well‐separated two‐step relaxation process with the anisotropic centers in fine‐tuned local environments was elaborately designed. For the first time a one‐to‐one relationship between the metal sites and the relaxation processes was evidenced. This work sheds light on complex multiple relaxation and may direct the rational design of lanthanide SMMs with enhanced magnetic properties.  相似文献   

3.
4.
A spiropyran‐based switchable ligand isomerizes upon reaction with lanthanide(III) precursors to generate complexes with an unusual N3O5 coordination sphere. The air‐stable dysprosium(III) complex shows a hysteresis loop at 2 K and a very strong axial magnetic anisotropy generated by the merocyanine phenolate donor.  相似文献   

5.
We investigate a family of dinuclear dysprosium metallocene single‐molecule magnets (SMMs) bridged by methyl and halogen groups [Cp′2Dy(μ‐X)]2 (Cp′=cyclopentadienyltrimethylsilane anion; 1 : X=CH3?; 2 : X=Cl?; 3 : X=Br?; 4 : X=I?). For the first time, the magnetic easy axes of dysprosium metallocene SMMs are experimentally determined, confirming that the orientation of them are perpendicular to the equatorial plane which is made up of dysprosium and bridging atoms. The orientation of the magnetic easy axis for 1 deviates from the normal direction (by 10.3°) due to the stronger equatorial interactions between DyIII and methyl groups. Moreover, its magnetic axes show a temperature‐dependent shifting, which is caused by the competition between exchange interactions and Zeeman interactions. Studies of fluorescence and specific heat as well as ab initio calculations reveal the significant influences of the bridging ligands on their low‐lying exchange‐based energy levels and, consequently, low‐temperature magnetic properties.  相似文献   

6.
We have prepared and structurally characterized a new member of the butterfly‐like {CoIII2DyIII2} single‐molecule magnets (SMMs) through further CoIII decoration, with the formula [CoIII4DyIII2(OH)2(teaH)2(tea)2(Piv)6] (teaH3=triethanolamine; Piv=trimethylacetate or pivalate). Direct current (DC) susceptibility and magnetization measurements were performed allowing the extraction of possible crystal‐field parameters. A simple electrostatic modeling shows reasonable agreement with experimental data. Alternating current (AC) susceptibility measurements under a zero DC field and under small applied fields were performed at different frequencies (i.e., 10–1500 Hz) and at low temperatures (i.e., 2–10 K). Multiple magnetization relaxation pathways are observed. Comparison with previously reported {CoIII2DyIII2} complex measurements allows an overall discussion about the origin of the dynamic behavior and its relationship with crystal‐field split ground multiplet sublevels.  相似文献   

7.
A new family of five-coordinate lanthanide single-molecule magnets (Ln SMMs) [Dy(Mes*O)2(THF)2X] (Mes*=2,4,6-tri-tert-butylphenyl; X=Cl, 1 ; Br, 2 ; I, 3 ) is reported with energy barriers to magnetic reversal >1200 K. The five-coordinate DyIII ions have distorted square pyramidal geometries, with halide anions on the apex, and two Mes*O ligands mutually trans- to each other, and the two THF molecules forming the second trans- pair. These geometrical features lead to a large magnetic anisotropy in these complexes along the trans-Mes*O direction. QTM and Raman relaxation times are enhanced by varying the apex halide from Cl to Br to I, or by dilution in a diamagnetic yttrium analogue.  相似文献   

8.
Efficient modulation of single‐molecule magnet (SMM) behavior was realized by deliberate structural modification of the Dy2 cores of [Dy2( a ′ povh )2(OAc)2(DMF)2] ( 1 ) and [Zn2Dy2( a′povh )2(OAc)6] ? 4 H2O ( 2 ; H2 a ′ povh =N′‐[amino(pyrimidin‐2‐yl)methylene]‐o‐vanilloyl hydrazine). Compound 1 having fourfold linkage between the two dysprosium ions shows high‐performance SMM behavior with a thermal energy barrier of 322.1 K, whereas only slow relaxation is observed for compound 2 with only twofold connection between the dysprosium ions. This remarkable discrepancy is mainly because of strong axiality in 1 due to one pronounced covalent bond, as revealed by experimental and theoretical investigations. The significant antiferromagnetic interaction derived from bis(μ2‐O) and two acetate bridging groups was found to be crucial in leading to a nonmagnetic ground state in 1 , by suppressing zero‐field quantum tunneling of magnetization.  相似文献   

9.
Complexes of trivalent lanthanides (Ln) are known to possess strong magnetic anisotropy, which enables them to be efficient single‐molecule magnets. High‐level ab initio calculations are reported for [LnO] (where Ln is terbium (Tb), dysprosium (Dy), or holmium (Ho)), which show that divalent lanthanides can exhibit equally strong magnetic anisotropy and magnetization blocking barriers. In particular, detailed calculations predict a multilevel magnetization blocking barrier exceeding 3000 K for a [DyO] complex deposited on a hexagonal boron nitride (h‐BN) surface, bringing the expected performance of single‐molecule magnets to a qualitatively new level compared to the current state‐of‐the art complexes.  相似文献   

10.
A rational approach to modulating easy-axis magnetic anisotropy by varying the axial donor ligand in heptacoordinated FeII complexes has been explored. In this series of complexes with formulae of [Fe(H4L)(NCS)2] ⋅ 3 DMF ⋅ 0.5 H2O ( 1 ), [Fe(H4L)(NCSe)2] ⋅ 3 DMF ⋅ 0.5 H2O ( 2 ), and [Fe(H4L)(NCNCN)2] ⋅ DMF ⋅ H2O ( 3 ) [H4L=2,2′-{pyridine-2,6-diylbis(ethan-1-yl-1-ylidene)}bis(N-phenylhydrazinecarboxamide)], the axial positions are successively occupied by different nitrogen-based π-donor ligands. Detailed dc and ac magnetic susceptibility measurements reveal the existence of easy-axis magnetic anisotropy for all of the complexes, with 1 [Ueff=21 K, τ0=1.72×10−6 s] and 2 [Ueff=25 K, τ0=2.25×10−6 s] showing field-induced slow magnetic relaxation behavior. However, both experimental studies and theoretical calculations indicate the magnitude of the D value of complex 3 to be larger than those of complexes 1 and 2 due to the axial bond angle being smaller than that for an ideal geometry. Detailed analysis of the field and temperature dependences of relaxation time for 1 and 2 has revealed that multiple relaxation processes (quantum tunneling of magnetization, direct, and Raman) are involved in slow magnetic relaxation for both of these complexes. Magnetic dilution experiments support the role of intermolecular short contacts.  相似文献   

11.
The single-molecule magnet (SMM) properties of a series of ferrocenium complexes, [Fe(η5-C5R5)2]+ (R=Me, Bn), are reported. In the presence of an applied dc field, the slow dynamics of the magnetization in [Fe(η5-C5Me5)2]BArF are revealed. Multireference quantum mechanical calculations show a large energy difference between the ground and first excited states, excluding the commonly invoked, thermally activated (Orbach-like) mechanism of relaxation. In contrast, a detailed analysis of the relaxation time highlights that both direct and Raman processes are responsible for the SMM properties. Similarly, the bulky ferrocenium complexes, [Fe(η5-C5Bn5)2]BF4 and [Fe(η5-C5Bn5)2]PF6, also exhibit magnetization slow dynamics, however an additional relaxation process is clearly detected for these analogous systems.  相似文献   

12.
We investigate a family of dinuclear dysprosium metallocene single-molecule magnets (SMMs) bridged by methyl and halogen groups [Cp′2Dy(μ-X)]2 (Cp′=cyclopentadienyltrimethylsilane anion; 1 : X=CH3; 2 : X=Cl; 3 : X=Br; 4 : X=I). For the first time, the magnetic easy axes of dysprosium metallocene SMMs are experimentally determined, confirming that the orientation of them are perpendicular to the equatorial plane which is made up of dysprosium and bridging atoms. The orientation of the magnetic easy axis for 1 deviates from the normal direction (by 10.3°) due to the stronger equatorial interactions between DyIII and methyl groups. Moreover, its magnetic axes show a temperature-dependent shifting, which is caused by the competition between exchange interactions and Zeeman interactions. Studies of fluorescence and specific heat as well as ab initio calculations reveal the significant influences of the bridging ligands on their low-lying exchange-based energy levels and, consequently, low-temperature magnetic properties.  相似文献   

13.
Three lanthanide‐based two‐dimensional (2D) coordination polymers (CPs), [Ln(L)(H2O)2]n, {H3L=(HO)2P(O)CH2CO2H; Ln=Dy3+ (CP 1 ), Er3+ (CP 2 )} and [{Gd2(L)2(H2O)3}.H2O]n, (CP 3 ) were hydrothermally synthesized using phosphonoacetic acid as a linker. Structural features revealed that the dinuclear Ln3+ nodes were present in the 2D sheet of CP 1 and CP 2 while in the case of CP 3 , nodes were further connected to each other forming a chain‐type arrangement throughout the network. The magnetic studies show field‐induced slow magnetic relaxation property in CP 1 and CP 2 with Ueff values of 72 K (relaxation time, τ0=3.05×10?7 s) and 38.42 K (relaxation time, τ0=4.60×10?8 s) respectively. Ab‐initio calculations suggest that the g tensor of Kramers doublet of the lanthanide ion (Dy3+ and Er3+) is strongly axial in nature which reflects in the slow magnetic relaxation behavior of both CPs. CP 3 exhibits a significant magnetocaloric effect with ?ΔSm=49.29 J kg?1 K?1, one of the highest value among the reported 2D CPs. Moreover, impedance analysis of all the CPs show high proton conductivity with values of 1.13×10?6 S cm?1, 2.73×10?3 S cm?1 and 2, 6.27×10?6 S cm?1 for CPs 1 – 3 , respectively, at high temperature (>75 °C) and maximum 95 % relative humidity (RH).  相似文献   

14.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   

15.
We present a combined experimental and theoretical study of the ultrafast transient absorption spectroscopy results of a {Ni2Dy2}-compound in DMF, which can be considered as a prototypic molecule for single molecule magnets. We apply state-of-the-art ab initio quantum chemistry to quantitatively describe the optical properties of an inorganic complex system comprising ten atoms to form the chromophoric unit, which is further stabilized by surrounding ligands. Two different basis sets are used for the calculations to specifically identify two dominant peaks in the ground state. Furthermore, we theoretically propagate the compound's correlated many-body wavefunction under the influence of a laser pulse as well as relaxation processes and compare against the time-resolved absorption spectra. The experimental data can be described with a time constant of several hundreds of femtoseconds attributed to vibrational relaxation and trapping into states localized within the band gap. A second time constant is ascribed to the excited state while trap states show lifetimes on a longer timescale. The theoretical propagation is performed with the density-matrix formalism and the Lindblad superoperator, which couples the system to a thermal bath, allowing us to extract relaxation times from first principles.  相似文献   

16.
The synthesis, magnetic properties, and theoretical studies of three heterometallic {CrIIILnIII6} (Ln=Tb, Ho, Er) complexes, each containing a metal topology consisting of two Ln3 triangles connected via a CrIII linker, are reported. The {CrTb6} and {CrEr6} analogues display slow relaxation of magnetization in a 3000 Oe static magnetic field. Single‐crystal measurements reveal opening up of the hysteresis loop for {CrTb6} and {CrHo6} molecules at low temperatures. Ab initio calculations predict toroidal magnetic moments in the two Ln3 triangles, which are found to couple, stabilizing a con‐rotating ferrotoroidal ground state in Tb and Ho examples and extend the possibility of observing toroidal behaviour in non DyIII complexes for the first time.  相似文献   

17.
We report a monometallic dysprosium complex, [Dy(OtBu)2(py)5][BPh4] ( 5 ), that shows the largest effective energy barrier to magnetic relaxation of Ueff=1815(1) K. The massive magnetic anisotropy is due to bis‐trans‐disposed tert‐butoxide ligands with weak equatorial pyridine donors, approaching proposed schemes for high‐temperature single‐molecule magnets (SMMs). The blocking temperature, TB , is 14 K, defined by zero‐field‐cooled magnetization experiments, and is the largest for any monometallic complex and equal with the current record for [Tb2N2{N(SiMe3)2}4(THF)2].  相似文献   

18.
A record anisotropy barrier (319 cm?1) for all d‐f complexes was observed for a unique FeII‐DyIII‐FeII single‐molecule magnet (SMM), which possesses two asymmetric and distorted FeII ions and one quasi‐D5h DyIII ion. The frozen magnetization of the DyIII ion leads to the decreased FeII relaxation rates evident in the Mössbauer spectrum. Ab initio calculations suggest that tunneling is interrupted effectively thanks to the exchange doublets.  相似文献   

19.
A dinuclear CoII complex ( 1 ) featuring unprecedented anodic and cathodic switches for single‐molecule magnet (SMM) activity has been recently investigated (J. Am. Chem. Soc. 2013 , 135, 14670). The presence of sandwiched radicals in different oxidation states of this compound mediates magnetic coupling between the high‐spin (S=3/2) cobalt ions, which gives rise to SMM activity in both the oxidized ([ 1 (OEt2)]+) and reduced ([ 1 ]?) states. This feature represents the first example of a SMM exhibiting fully reversible, dual ON/OFF switchability. Here we apply ab initio and broken‐symmetry DFT calculations to elucidate the mechanisms responsible for magnetic properties and magnetization blocking in these compounds. It is found that due to the strong delocalization of the magnetic molecular orbital, there is a strong antiferromagnetic interaction between the radical and cobalt ions. The lack of high axiality of the cobalt centres explains why these compounds possess slow relaxation of magnetization only in an applied dc magnetic field.  相似文献   

20.
The experimental investigation of the molecular magnetic anisotropy in crystals in which the magnetic centers are symmetry related, but do not have a parallel orientation has been approached by using torque magnetometry. A single crystal of the orthorhombic organometallic Cp*ErCOT [Cp*=pentamethylcyclopentadiene anion (C5Me5?); COT=cyclooctatetraenedianion (C8H82?)] single‐molecule magnet, characterized by the presence of two nonparallel families of molecules in the crystal, has been investigated above its blocking temperature. The results confirm an Ising‐type anisotropy with the easy direction pointing along the pseudosymmetry axis of the complex, as previously suggested by out‐of‐equilibrium angular‐resolved magnetometry. The use of torque magnetometry, not requiring the presence of magnetic hysteresis, proves to be even more powerful for these purposes than standard single‐crystal magnetometry. Furthermore, exploiting the sensitivity and versatility of this technique, magnetic anisotropy has been investigated up to 150 K, providing additional information on the crystal‐field splitting of the ground J multiplet of the ErIII ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号