首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Asymmetric reductive Heck reaction of aryl halides is realized in high stereoselectivity. Hydrogen‐bond donors, trialkylammonium salts in a glycol solvent, were used to promote halide dissociation from neutral arylpalladium complexes to access cationic, stereoselective pathways.  相似文献   

4.
A palladium‐catalyzed hydrocarboxylation of alkynes with formic acid has been developed. The method provides acrylic acid and derivatives in good yields with high regioselectivity without the need to handle toxic CO gas.  相似文献   

5.
Acylphosphonates are conveniently synthesized from aryl iodides by a palladium‐catalyzed reaction with dialkyl phosphites under an atmospheric pressure of carbon monoxide. The reaction demonstrates the first example of the use of phosphorus nucleophiles in related metal‐catalyzed carbonylation reactions.  相似文献   

6.
A practical palladium‐catalyzed carbonylative Suzuki coupling of aryl halides under carbon monoxide gas‐free conditions has been developed. Here, formic acid was utilized as the carbon monoxide source for the first time with acetic anhydride as the additive. A variety of diarylketones were produced in moderate to excellent yields from the corresponding aryl halides and arylboronic acids.  相似文献   

7.
A new catalyst for the carboxylative synthesis of arylacetic and benzoic acids using formic acid (HCOOH) as the CO surrogate was developed. In an improvement over previous work, CO is generated in situ without the need for any additional activators. Key to success was the use of a specific system consisting of palladium acetate and 1,2‐bis((tert‐butyl(2‐pyridinyl)phosphinyl)methyl)benzene. The generality of this method is demonstrated by the synthesis of more than 30 carboxylic acids, including non‐steroidal anti‐inflammatory drugs (NSAIDs), under mild conditions in good yields.  相似文献   

8.
Three‐component couplings were achieved from common aryl halides, alkyl halides, and heteroarenes under palladium and norbornene co‐catalysis. The reaction forges hindered aryl–heteroaryl bonds and introduces ortho‐alkyl groups to aryl rings. Various heterocycles such as oxazoles, thiazoles and thiophenes underwent efficient coupling. The heteroarenes were deprotonated in situ by bases without the assistance of palladium catalysts.  相似文献   

9.
A palladium‐catalyzed carbonylative coupling of (hetero)aryl boronates or boronic acid salts with carbon monoxide and α‐bromo‐α,α‐difluoroamides and bromo‐α,α‐difluoroesters is described herein. The method is useful for the synthesis of a diverse selection of (hetero)aryl α,α‐difluoro‐β‐ketoamides and α,α‐difluoro‐β‐ketoesters, which are useful building blocks for the generation of functionalized difluoroacylated and difluoroalkyl arenes. The method could be further extended to a one‐pot protocol for the formation of difluoroacetophenones.  相似文献   

10.
11.
Benzylation and allylation of aldehyde acyl anions were enabled by the merger of a thiazolium N‐heterocyclic carbene (NHC) catalyst and a palladium/bisphosphine catalyst in a synergistic manner. Owing to the mildness of the reaction conditions, various functional groups were tolerated in the substrates.  相似文献   

12.
A novel and efficient palladium‐catalyzed aminocarbonylation of aryl iodides with amides and N‐alkyl anilines has been developed. The reaction tolerates a wide range of functional groups and is a reliable method for the rapid synthesis of a variety of valuable imides and tertiary benzanilides under an atmospheric pressure of CO.  相似文献   

13.
14.
A CO group richer : (Hetero)arenes are vital intermediates in the manufacture of agrochemicals, dyes, pharmaceuticals, and other industrial products. In the past decades transition‐metal‐catalyzed coupling reactions of aryl halides with all types of nucleophiles have been developed. This Review summarizes recent work in the area of palladium‐catalyzed carbonylation reactions of aryl halides and related compounds (see scheme).

  相似文献   


15.
Palladium on carbon catalyzes C?O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by alcohols (R?OH) in H2. The aromatic C?O bond is cleaved by reductive solvolysis, which is initiated by Pd‐catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with alcohols to form a ketal, which generates 1‐cyclohexenyl?O?R by eliminating phenol or an alkanol. Subsequent hydrogenation leads to cyclohexyl?O?R.  相似文献   

16.
Carbonylation reactions represent useful tools for organic synthesis. However, the necessity to use gaseous carbon monoxide is a disadvantage for most organic chemists. To solve this problem, novel protocols have been developed for conducting palladium‐catalyzed reductive carbonylations of aryl bromides and alkoxycarbonylations using paraformaldehyde as an external CO source (CO gas free). Hence, aromatic aldehydes and esters were synthesized in moderate to good yields.  相似文献   

17.
We report a palladium‐catalyzed method to synthesize acid chlorides by the chlorocarbonylation of aryl bromides. Mechanistic studies suggest the combination of sterically encumbered PtBu3 and CO coordination to palladium can rapidly equilibrate the oxidative addition/reductive elimination of carbon–halogen bonds. This provides a useful method to assemble highly reactive acid chlorides from stable and available reagents, and can be coupled with subsequent nucleophilic reactions to generate new classes of carbonylated products.  相似文献   

18.
β‐Lactam scaffolds are considered to be ideal building blocks for the synthesis of nitrogen‐containing compounds. A new palladium‐catalyzed oxidative carbonylation of N‐allylamines for the synthesis of α‐methylene‐β‐lactams is reported. DFT calculations suggest that the formation of β‐lactams via a four‐membered‐ring transition state is favorable.  相似文献   

19.
Palladium(0)‐catalyzed deacylative cross‐coupling of aryl iodides and acyldiazocarbonyl compounds can be achieved at room temperature under mild reaction conditions. The coupling reaction represents a highly efficient and general method for the synthesis of aryldiazocarbonyl compounds, which have found wide and increasing applications as precursors for generating donor/acceptor‐substituted metallocarbenes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号