首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reducible metal–organic framework (MOF), iron(III) trimesate, denoted as MIL‐100(Fe), was investigated for the separation and purification of methane/ethane/ethylene/acetylene and an acetylene/CO2 mixtures by using sorption isotherms, breakthrough experiments, ideal adsorbed solution theory (IAST) calculations, and IR spectroscopic analysis. The MIL‐100(Fe) showed high adsorption selectivity not only for acetylene and ethylene over methane and ethane, but also for acetylene over CO2. The separation and purification of acetylene over ethylene was also possible for MIL‐100(Fe) activated at 423 K. According to the data obtained from operando IR spectroscopy, the unsaturated FeIII sites and surface OH groups are mainly responsible for the successful separation of the acetylene/ethylene mixture, whereas the unsaturated FeII sites have a detrimental effect on both separation and purification. The potential of MIL‐100(Fe) for the separation of a mixture of C2H2/CO2 was also examined by using the IAST calculations and transient breakthrough simulations. Comparing the IAST selectivity calculations of C2H2/CO2 for four MOFs selected from the literature, the selectivity with MIL‐100(Fe) was higher than those of CuBTC, ZJU‐60a, and PCP‐33, but lower than that of HOF‐3.  相似文献   

2.
Highly selective separation and/or purification of acetylene from various gas mixtures is a relevant and difficult challenge that currently requires costly and energy‐intensive chemisorption processes. Two ultramicroporous metal–organic framework physisorbents, NKMOF‐1‐M (M=Cu or Ni), offer high hydrolytic stability and benchmark selectivity towards acetylene versus several gases at ambient temperature. The performance of NKMOF‐1‐M is attributed to their exceptional acetylene binding affinity as revealed by modelling and several experimental studies: in situ single‐crystal X‐ray diffraction, FTIR, and gas mixture breakthrough tests. NKMOF‐1‐M exhibit better low‐pressure uptake than existing physisorbents and possesses the highest selectivities yet reported for C2H2/CO2 and C2H2/CH4. The performance of NKMOF‐1‐M is not driven by the same mechanism as current benchmark physisorbents that rely on pore walls lined by inorganic anions.  相似文献   

3.
C2‐C3 alkyne/alkene separation is of great importance; however, designing materials for an efficient molecular sieving of alkenes from alkynes remains challenging. Now, two hydrolytically stable layered MOFs, [Cu(dps)2(GeF6)] (GeFSIX‐dps‐Cu, dps=4,4′‐dipyridylsulfide) and [Zn(dps)2(GeF6)] (GeFSIX‐dps‐Zn), can achieve almost complete exclusion of both C3H6 and C2H4 from their alkyne analogues. GeFSIX‐dps‐Cu displays a notable advanced threshold pressure for alkynes adsorption and thus substantial uptakes at lower pressures, providing record C3H4/C3H6 uptake ratios and capacity‐enhanced C2H2/C2H4 sieving for a wide composition range. Metal substitution (Zn to Cu) affords fine tuning of linker rotation and layer stacking, creating slightly expanded pore aperture and interlayer space coupled with multiple hydrogen‐bonding sites, allowing easier entrance of alkyne while excluding alkene. Breakthrough experiments confirmed tunable sieving by these MOFs for C3H4/C3H6 and C2H2/C2H4 mixtures.  相似文献   

4.
In this work, we have demonstrated a family of diamondoid metal–organic frameworks (MOFs) based on functionalized molecular building blocks and length‐adjustable organic linkers by using a stepwise synthesis strategy. We have successfully achieved not only “design” and “control” to synthesize MOFs, but also the functionalization of both secondary building units (SBUs) and organic linkers in the same MOF for the first time. Furthermore, the results of N2 and H2 adsorption show that their surface areas and hydrogen uptake capacities are determined by the most optimal combination of functional groups from SBUs and organic linkers, interpenetration, and free volume in this system. A member of this series, DMOF‐6 exhibits the highest surface area and H2 adsorption capacity among this family of MOFs.  相似文献   

5.
The separation of acetylene from ethylene is of paramount importance in the purification of chemical feedstocks for industrial manufacturing. Herein, an isostructural series of gallate-based metal–organic frameworks (MOFs), M-gallate (M=Ni, Mg, Co), featuring three-dimensionally interconnected zigzag channels, the aperture size of which can be finely tuned within 0.3 Å by metal replacement. Controlling the aperture size of M-gallate materials slightly from 3.69 down to 3.47 Å could result in a dramatic enhancement of C2H2/C2H4 separation performance. As the smallest radius among the studied metal ions, Ni-gallate exhibits the best C2H2/C2H4 adsorption separation performance owing to the strongest confinement effect, ranking after the state-of-the-art UTSA-200a with a C2H4 productivity of 85.6 mol L−1 from 1:99 C2H2/C2H4 mixture. The isostructural gallate-based MOFs, readily synthesized from inexpensive gallic acid, are demonstrated to be a new top-performing porous material for highly efficient adsorption of C2H2 from C2H4.  相似文献   

6.
Separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) is important in industry but limited by the low capacity and selectivity owing to their similar molecular sizes and physical properties. Herein, we report two novel dodecaborate‐hybrid metal–organic frameworks, MB12H12(dpb)2 (termed as BSF‐3 and BSF‐3‐Co for M=Cu and Co), for highly selective capture of C2H2. The high C2H2 capacity and remarkable C2H2/CO2 selectivity resulted from the unique anionic boron cluster functionality as well as the suitable pore size with cooperative proton‐hydride dihydrogen bonding sites (B?Hδ????Hδ+?C≡C?Hδ+???Hδ??B). This new type of C2H2‐specific functional sites represents a fresh paradigm distinct from those in previous leading materials based on open metal sites, strong electrostatics, or hydrogen bonding.  相似文献   

7.
Cationic frameworks can selectively trap anions through ion exchange, and have applications in ion chromatography and drug delivery. However, cationic frameworks are much rarer than anionic or neutral ones. Herein, we propose a concept, preemptive coordination (PC), for targeting positively charged metal–organic frameworks (P‐MOFs). PC refers to proactive blocking of metal coordination sites to preclude their occupation by neutralizing ligands such as OH?. We use 20 MOFs to show that this PC concept is an effective approach for developing P‐MOFs whose high stability, porosity, and anion‐exchange capability allow immobilization of anionic nucleotides and coenzymes, in addition to charge‐ and size‐selective capture or separation of organic dyes. The CO2 and C2H2 uptake capacity of 117.9 cm3 g?1 and 148.5 cm3 g?1, respectively, at 273 K and 1 atm, is exceptionally high among cationic framework materials.  相似文献   

8.
Storage and separation of small (C1–C3) hydrocarbons are of great significance as these are alternative energy resources and also can be used as raw materials for many industrially important materials. Selective capture of greenhouse gas, CO2 from CH4 is important to improve the quality of natural gas. Among the available porous materials, MOFs with permanent porosity are the most suitable to serve these purposes. Herein, a two‐fold entangled dynamic framework {[Zn2(bdc)2(bpNDI)]?4DMF}n with pore surface carved with polar functional groups and aromatic π clouds is exploited for selective capture of CO2, C2, and C3 hydrocarbons at ambient condition. The framework shows stepwise CO2 and C2H2 uptake at 195 K but type I profiles are observed at 298 K. The IAST selectivity of CO2 over CH4 is the highest (598 at 298 K) among the MOFs without open metal sites reported till date. It also shows high selectivity for C2H2, C2H4, C2H6, and C3H8 over CH4 at 298 K. DFT calculations reveal that aromatic π surface and the polar imide (RNC=O) functional groups are the primary adsorption sites for adsorption. Furthermore, breakthrough column experiments showed CO2/CH4 C2H6/CH4 and CO2/N2 separation capability at ambient condition.  相似文献   

9.
An ideal adsorbent for separation requires optimizing both storage capacity and selectivity, but maximizing both or achieving a desired balance remain challenging. Herein, a de-linker strategy is proposed to address this issue for metal–organic frameworks (MOFs). Broadly speaking, the de-linker idea targets a class of materials that may be viewed as being intermediate between zeolites and MOFs. Its feasibility is shown here by a series of ultra-microporous MOFs (SNNU-98-M, M=Mn, Co, Ni, Zn). SNNU-98 exhibit high volumetric C2H2 uptake capacity under low and ambient pressures (175.3 cm3 cm−3 @ 0.1 bar, 222.9 cm3 cm−3 @ 1 bar, 298 K), as well as extraordinary selectivity (2405.7 for C2H2/C2H4, 22.7 for C2H2/CO2). Remarkably, SNNU-98-Mn can efficiently separate C2H2 from C2H2/CO2 and C2H2/C2H4 mixtures with a benchmark C2H2/C2H4 (1/99) breakthrough time of 2325 min g−1, and produce 99.9999 % C2H4 with a productivity up to 64.6 mmol g−1, surpassing values of reported MOF adsorbents.  相似文献   

10.
Metal‐organic frameworks (MOFs) have gained great attention in recent years because they could behave as multifunctional materials which combine the advances of porous solids and coordination complexes. With the aim of constructing multifunctional MOFs, in this study, we choose a Y‐shaped tricarboxylic ligand biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt) to react with GdIII ions to afford a new dual‐functional lanthanide‐organic framework with the chemical formula of [Gd2(bpt)2(H2O)2] · (DMF)2(H2O)6 ( 1 ) (DMF = N,N‐dimethylformamide) under solvothermal condition. The title complex was characterized by means of elemental analysis, FT‐IR spectroscopy, thermogravimetric and X‐ray diffraction analyses. Crystal structure analysis reveals that compound 1 is composed of 1D helical chain secondary building units that connect by the bpt3– ligands into a 3D framework with 1D nanosized channels running along the b axis. In view of its high porosity and accessible open metal sites, the activated 1 ( 1a ) was studied for the cyanosilylation of aldehydes under solvent‐free conditions. The catalytic activity of 1a is much higher than that of compound 1 , indicating that the exposed open metal sites of 1a is beneficial to the cyanosilylation reaction. In connection to these, the different cytotoxicities of 1 and 1a were also evaluated on four human liver cancer cells (SMMC‐7721, Bel‐7402, MHCC97 and Hep3B) by the MTT assay.  相似文献   

11.
The metal ions in a neutral Zn–MOF constructed from tritopic triacid H3L with inherent concave features, rigid core, and peripheral flexibility are found to exist in two distinct SBUs, that is, 0D and 1D. This has allowed site‐selective postsynthetic metal exchange (PSME) to be investigated and reactivities of the metal ions in two different environments in coordination polymers to be contrasted for the first time. Site‐selective transmetalation of Zn ions in the discrete environment is shown to occur in a single crystal‐to‐single crystal (SCSC) fashion, with metal ions such as Fe3+, Ru3+, Cu2+, Co2+, etc., whereas those that are part of 1D SBU sustain structural integrity, leading to novel bimetallic MOFs, which are inaccessible by conventional approaches. To the best of our knowledge, site‐selective postsynthetic exchange of an intraframework metal ion in a MOF that contains metal ions in discrete as well as polymeric SBUs is heretofore unprecedented.  相似文献   

12.
Two isostructural CoII‐based metal–organic frameworks (MOFs) with the opposite framework charges have been constructed, which can be simply controlled by changing the tetrazolyl or triazolyl terminal in two bifunctional ligands. Notably, the cationic MOF 2 can adsorb much more C2H2 than the anionic MOF 1 with an increase of 88 % for C2H2 uptake at 298 K in spite of more active nitrogen sites in 1 . Theoretical calculations indicate that both nitrate and triazolyl play vital roles in C2H2 binding and the C2H2 adsorption isotherm confirms that the enhanced C2H2 uptake for 2 (225 and 163 cm3g?1 at 273 and 298 K) is exceptionally high for MOF materials without open metal sites or uncoordinated polar atom groups on the frameworks.  相似文献   

13.
Two metal–organic frameworks (MOFs) with Zr–oxo secondary building units (SBUs) were prepared by using p,p′‐terphenyldicarboxylate (TPDC) bridging ligands pre‐functionalized with orthogonal succinic acid (MOF‐ 1 ) and maleic acid groups (MOF‐ 2 ). Single‐crystal X‐ray structure analysis of MOF‐ 1 provides the first direct evidence for eight‐connected SBUs in UiO‐type MOFs. In contrast, MOF‐ 2 contains twelve‐connected SBUs as seen in the traditional UiO MOF topology. These structural assignments were confirmed by extended X‐ray absorption fine structure (EXAFS) analysis. The highly porous MOF‐ 1 is an excellent fluorescence sensor for metal ions with the detection limit of <0.5 ppb for Mn2+and three to four orders of magnitude greater sensitivity for metal ions than previously reported luminescent MOFs.  相似文献   

14.
Three isoreticular metal–organic frameworks, JUC‐100, JUC‐103 and JUC‐106, were synthesized by connecting six‐node dendritic ligands to a [Zn4O(CO2)6] cluster. JUC‐103 and JUC‐106 have additional methyl and ethyl groups, respectively, in the pores with respect to JUC‐100. The uptake measurements of the three MOFs for CH4, C2H4, C2H6 and C3H8 were carried out. At 298 K, 1 atm, JUC‐103 has relatively high CH4 uptake, but JUC‐100 is the best at 273 K, 1 atm. JUC‐100 and JUC‐103 have similar C2H4 absorption ability. In addition, JUC‐100 has the best absorption capacity for C2H6 and C3H8. These results suggest that high surface area and appropriate pore size are important factors for gas uptake. Furthermore, ideal adsorbed solution theory (IAST) analyses show that all three MOFs have good C3H8/CH4 and C2H6/CH4 selectivities for an equimolar quaternary CH4/C2H4/C2H6/C3H8 gas mixture maintained at isothermal conditions at 298 K, and JUC‐106 has the best C2H6/CH4 selectivity. The breakthrough simulations indicate that all three MOFs have good capability for separating C2 hydrocarbons from C3 hydrocarbons. The pulse chromatographic simulations also indicate that all three MOFs are able to separate CH4/C2H4/C2H6/C3H8 mixture into three different fractions of C1, C2 and C3 hydrocarbons.  相似文献   

15.
The separation of C2H2/CO2 is particularly challenging owing to their similarities in physical properties and molecular sizes. Reported here is a mixed metal–organic framework (M′MOF), [Fe(pyz)Ni(CN)4] ( FeNi‐M′MOF , pyz=pyrazine), with multiple functional sites and compact one‐dimensional channels of about 4.0 Å for C2H2/CO2 separation. This MOF shows not only a remarkable volumetric C2H2 uptake of 133 cm3 cm?3, but also an excellent C2H2/CO2 selectivity of 24 under ambient conditions, resulting in the second highest C2H2‐capture amount of 4.54 mol L?1, thus outperforming most previous benchmark materials. The separation performance of this material is driven by π–π stacking and multiple intermolecular interactions between C2H2 molecules and the binding sites of FeNi‐M′MOF . This material can be facilely synthesized at room temperature and is water stable, highlighting FeNi‐M′MOF as a promising material for C2H2/CO2 separation.  相似文献   

16.
Separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) is industrially important but still challenging so far. Herein, we developed two novel robust metal organic frameworks AlFSIX-Cu-TPBDA (ZNU-8) with znv topology and SIFSIX-Cu-TPBDA (ZNU-9) with wly topology for efficient capture of C2H2 from CO2 and C2H4. Both ZNU-8 and ZNU-9 feature multiple anion functionalities and hierarchical porosity. Notably, ZNU-9 with more anionic binding sites and three distinct cages displays both an extremely large C2H2 capacity (7.94 mmol/g) and a high C2H2/CO2 (10.3) or C2H2/C2H4 (11.6) selectivity. The calculated capacity of C2H2 per anion (4.94 mol/mol at 1 bar) is the highest among all the anion pillared metal organic frameworks. Theoretical calculation indicated that the strong cooperative hydrogen bonds exist between acetylene and the pillared SiF62− anions in the confined cavity, which is further confirmed by in situ IR spectra. The practical separation performance was explicitly demonstrated by dynamic breakthrough experiments with equimolar C2H2/CO2 mixtures and 1/99 C2H2/C2H4 mixtures under various conditions with excellent recyclability and benchmark productivity of pure C2H2 (5.13 mmol/g) or C2H4 (48.57 mmol/g).  相似文献   

17.
The one-step purification of ethylene (C2H4) from mixtures containing ethane (C2H6) and acetylene (C2H2) is an industrially important yet challenging process. In this work, we present a site-engineering strategy aimed at manipulating the spatial distribution of binding sites within a confined pore space. We realized successfully by incorporating nitrogen-containing heterocycles, such as indole-5-carboxylic acid (Ind), benzimidazole-5-carboxylic acid (Bzz), and indazole-5-carboxylic acid (Izo), into the robust MOF-808 platform via post-synthetic modification. The resulting functionalized materials, namely MOF-808-Ind, MOF-808-Bzz, and MOF-808-Izo, demonstrated significantly improved selectivity for C2H2 and C2H6 over C2H4. MOF-808-Bzz with two uniformly distributed nitrogen binding sites gave the optimal geometry for selective ethane trapping through multiple strong C−H⋅⋅⋅N hydrogen bonds, leading to the highest C2H2/C2H4 and C2H6/C2H4 combined selectivities among known MOFs. Column breakthrough experiments validated its ability to purify C2H4 from ternary C2H2/C2H4/C2H6 mixtures in a single step.  相似文献   

18.
Introduction of pore partition agents into hexagonal channels of MIL-88 type (acs topology) endows materials with high tunability in gas sorption. Here, we report a strategy to partition acs framework into pacs (partitioned acs) crystalline porous materials (CPM). This strategy is based on insertion of in situ synthesized 4,4′-dipyridylsulfide (dps) ligands. One third of open metal sites in the acs net are retained in pacs MOFs; two thirds are used for pore-space partition. The Co2V-pacs MOFs exhibit near or at record high uptake capacities for C2H2, C2H4, C2H6, and CO2 among MOFs. The storage capacity of C2H2 is 234 cm3 g−1 (298 K) and 330 cm3 g−1 (273 K) at 1 atm for CPM-733-dps (the Co2V-BDC form, BDC=1,4-benzenedicarboxylate). These high uptake capacities are accomplished with low heat of adsorption, a feature desirable for low-energy-cost adsorbent regeneration. CPM-733-dps is stable and shows no loss of C2H2 adsorption capacity following multiple adsorption–desorption cycles.  相似文献   

19.
A novel 3D metal‐organic framework BSF‐1 based on the closo‐dodecaborate cluster [B12H12]2? was readily prepared at room temperature by supramolecular assembly of CuB12H12 and 1,2‐bis(4‐pyridyl)acetylene. The permanent microporous structure was studied by X‐ray crystallography, powder X‐ray diffraction, IR spectroscopy, thermogravimetric analysis, and gas sorption. The experimental and theoretical study of the gas sorption behavior of BSF‐1 for N2, C2H2, C2H4, CO2, C3H8, C2H6, and CH4 indicated excellent separation selectivities for C3H8/CH4, C2H6/CH4, and C2H2/CH4 as well as moderately high separation selectivities for C2H2/C2H4, C2H2/CO2, and CO2/CH4. Moreover, the practical separation performance of C3H8/CH4 and C2H6/CH4 was confirmed by dynamic breakthrough experiments. The good cyclability and high water/thermal stability render it suitable for real industrial applications.  相似文献   

20.
Metal–organic frameworks (MOFs) are crystalline porous materials formed from bi‐ or multipodal organic linkers and transition‐metal nodes. Some MOFs have high structural stability, combined with large flexibility in design and post‐synthetic modification. MOFs can be photoresponsive through light absorption by the organic linker or the metal oxide nodes. Photoexcitation of the light absorbing units in MOFs often generates a ligand‐to‐metal charge‐separation state that can result in photocatalytic activity. In this Review we discuss the advantages and uniqueness that MOFs offer in photocatalysis. We present the best practices to determine photocatalytic activity in MOFs and for the deposition of co‐catalysts. In particular we give examples showing the photocatalytic activity of MOFs in H2 evolution, CO2 reduction, photooxygenation, and photoreduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号