首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex [Ni(bpy)3]2+ (bpy=2,2′‐bipyridine) is an active catalyst for visible‐light‐driven H2 production from water when employed with [Ir(dfppy)2(Hdcbpy)] [dfppy=2‐(3,4‐difluorophenyl)pyridine, Hdcbpy=4‐carboxy‐2,2′‐bipyridine‐4′‐carboxylate] as the photosensitizer and triethanolamine as the sacrificial electron donor. The highest turnover number of 520 with respect to the nickel(II) catalyst is obtained in a 8:2 acetonitrile/water solution at pH 9. The H2‐evolution system is more stable after the addition of an extra free bpy ligand, owing to faster catalyst regeneration. The photocatalytic results demonstrate that the nickel(II) polypyridyl catalyst can act as a more effective catalyst than the commonly utilized [Co(bpy)3]2+. This study may offer a new paradigm for constructing simple and noble‐metal‐free catalysts for photocatalytic hydrogen production.  相似文献   

2.
Heteroleptic Ru(II) complexes were designed based on 4,4′‐bis((E)‐styryl)‐2,2′‐bipyridine (bsbpy) as an ancillary ligand for dye‐sensitized solar cells (DSSCs), and those Ru(II) sensitizers, [Ru(L)(bsbpy)(NCS)2][TBA] (TBA; tetrabutylammonium), were synthesized according to a typical one‐pot reaction of [RuCl2(p‐cymene)]2 with the corresponding anchoring ligands (where L = 4,4′‐dicarboxy‐2,2′‐bipyridine (dcbpy), 4,4′‐bis((E)‐carboxyvinyl)‐2,2′‐bipyridine (dcvbpy), 4,7‐dicarboxy‐1,10‐phenanthroline (dcphen), or 4,7‐bis((E)‐carboxyvinyl)‐1,10‐phenanthroline (dcvphen)). The new Ru(II) dyes, [Ru(L)(bsbpy)(NCS)2][TBA] that incorporated vinyl spacer(s) into ancillary and/or anchoring ligand displayed red‐shifted bands over the overall UV/VIS region relative to the absorption spectra of N719 . A combination of bsbpy ancillary and dcphen anchoring ligand showed the best result for the overall power conversion efficiency (η); i.e., a DSSC fabricated with [Ru(dcphen)(bsbpy)(NCS)2][TBA] exhibited a power conversion efficiency (η) of 2.98% (compare to N719 , 4.82%).  相似文献   

3.
The synthesis of a number of new 2,2′‐bipyridine ligands functionalized with bulky amino side groups is reported. Three homoleptic polypyridyl ruthenium (II) complexes, [Ru(L)3]2+ 2(PF6?), where L is 4,4′‐dioctylaminomethyl‐2,2′‐bipyridine (Ru4a), 4,4′‐didodecylaminomethyl‐2,2′‐bipyridine (Ru4b) and 4,4′‐dioctadodecylaminomethyl‐2,2′‐bipyridine (Ru4c), have been synthesized. These compounds were characterized and their photophysical properties examined. The electronic spectra of three complexes show pyridyl π → π* transitions in the UV region and metal‐to‐ligand charge transfer bands in the visible region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Based on the a ligand BDPPZ [(9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone] (1) and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes, [Ru(bpy)2L](PF6)2 (2), [Ru(phen)2L](PF6)2 (3), [Ru(dafo)2L](PF6)2 (4), [Ru(dcbpy)2L](PF6)2 (5) and [RuL3](PF6)2 (6) (where, L = ligand, bpy = 2,2′‐bipyridine, phen = 1,10‐phenantroline, dafo = 4,5‐diazafluoren‐9‐one and dcbpy = 3,3′‐dicarboxy‐2,2′‐bipyridine), have been synthesized and characterized by elemental analysis, UV–vis, FT‐IR, 1H and 13C‐NMR spectra (for ligand), molar conductivity measurements and X‐ray powder techniques. The electrochemical parameters of the substituted ligand and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes are reported by cyclic voltammetry. UV–vis spectroscopy is used to compare the differences between the conjugated π systems in this ligand and its Ru(II) metal complexes. The polypyridyl hetero‐ and homoleptic Ru(II) metal complexes also tested as catalysts for the formation of cyclic organic carbonates from carbon dioxide and liquid epoxides which served as both reactant and solvent. The results showed that the [Ru(L)3](PF6)2 (6) complex is more efficient than the other Ru(II) complexes for the formation of cyclic organic carbonates from carbon dioxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The detailed synthesis and characterization of four ruthenium(II) complexes [RuLL′(NCS)2] is reported, in which L represents a 2,2′‐bipyridine ligand functionalized at the 4,4′ positions with benzo[1,2‐b:4,5‐b′]dithiophene derivatives (BDT) and L′ is 2,2′‐bipyridine‐4,4′‐dicarboxylic acid unit (dcbpy) (NCS=isothiocyanate). The reaction conditions were adapted and optimized for the preparation of these amphiphilic complexes with a strong lipophilic character. The photovoltaic performances of these complexes were tested in TiO2 dye‐sensitized solar cell (DSSC) achieving efficiencies in the range of 3–4.5 % under simulated one sun illumination (AM1.5G).  相似文献   

6.
Two mononuclear ruthenium complexes [Ru(H2tcbp)(isoq)2] ( 1 ) and [Ru(H2tcbp)(pic)2] ( 2 ) (H4tcbp=4,4′,6,6′‐tetracarboxy‐2,2′‐bipyridine, isoq=isoquinoline, pic=4‐picoline) are synthesized and fully characterized. Two spare carboxyl groups on the 4,4′‐positions are introduced to enhance the solubility of 1 and 2 in water and to simultaneously allow them to tether to the electrode surface by an ester linkage. The photochemical, electrochemical, and photoelectrochemical water oxidation performance of 1 in neutral aqueous solution is investigated. Under electrochemical conditions, water oxidation is conducted on the deposited indium‐tin‐oxide anode, and a turnover number higher than 15,000 per water oxidation catalyst (WOC) 1 is obtained during 10 h of electrolysis under 1.42 V vs. NHE, corresponding to a turnover frequency of 0.41 s?1. The low overpotential (0.17 V) of electrochemical water oxidation for 1 in the homogeneous solution enables water oxidation under visible light by using [Ru(bpy)3]2+ ( P1 ) (bpy=2,2′‐bipyridine) or [Ru(bpy)2(4,4′‐(COOEt)2‐bpy)]2+ ( P2 ) as a photosensitizer. In a three‐component system containing 1 or 2 as a light‐driven WOC, P1 or P2 as a photosensitizer, and Na2S2O8 or [CoCl(NH3)5]Cl2 as a sacrificial electron acceptor, a high turnover frequency of 0.81 s?1 and a turnover number of up to 600 for 1 under different catalytic conditions are achieved. In a photoelectrochemical system, the WOC 1 and photosensitizer are immobilized together on the photoanode. The electrons efficiently transfer from the WOC to the photogenerated oxidizing photosensitizer, and a high photocurrent density of 85 μA cm?2 is obtained by applying 0.3 V bias vs. NHE.  相似文献   

7.
Cationic (arene)ruthenium‐based tetranuclear complexes of the general formula [Ru4(η6‐p‐cymene)4(μ‐NN)2(μ‐OO∩OO)2]4+ were obtained from the dinuclear (arene)ruthenium complexes [Ru2(η6p‐cymene)2(μ‐OO∩OO)2Cl2] (p‐cymene=1‐methyl‐4‐(1‐methylethyl)benzene, OO∩OO=5,8‐dihydroxy‐1,4‐naphthoquinonato(2?), 9,10‐dihydroxy‐1,4‐anthraquinonato(2?), or 6,11‐dihydroxynaphthacene‐5,12‐dionato(2?)) by reaction with pyrazine or bipyridine linkers (NN=pyrazine, 4,4′‐bipyridine, 4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine]) in the presence of silver trifluoromethanesulfonate (CF3SO3Ag) (Scheme). All complexes 4 – 12 were isolated in good yield as CF3SO salts, and characterized by NMR and IR spectroscopy. The host–guest properties of the metallarectangles incorporating 4,4′‐bipyridine and (4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine] linkers were studied in solution by means of multiple NMR experiments (1D, ROESY, and DOSY). The largest metallarectangles 10 – 12 incorporating (4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine] linkers are able to host an anthracene, pyrene, perylene, or coronene molecule in their cavity, while the medium‐size metallarectangles 7 – 9 incorporating 4,4′‐bipyridine linkers are only able to encapsulate anthracene. However, out‐of‐cavity interactions are observed between these 4,4′‐bipyridine‐containing rectangles and pyrene, perylene, or coronene. In contrast, the small pyrazine‐containing metallarectangles 4 – 6 show no interaction in solution with this series of planar aromatic molecules.  相似文献   

8.
The templated synthesis of organic macrocycles containing rings of up to 96 atoms and three 2,2′‐bipyridine (bpy) units is described. Starting with the bpy‐centred ligands 5,5′‐bis[3‐(1,4‐dioxahept‐6‐enylphenyl)]‐2,2′‐bipyridine and 5,5′‐bis[3‐(1,4,7‐trioxadec‐9‐enylphenyl)]‐2,2′‐bipyridine, we have applied Grubbs’ methodology to couple the terminal alkene units of the coordinated ligands in [FeL3]2+ complexes. Hydrogenation and demetallation of the iron(II)‐containing macrocyclic complexes results in the isolation of large organic macrocycles. The latter bind {Ru(bpy)2} units to give macrocyclic complexes with exocyclic ruthenium(II)‐containing domains. The complex [Ru(bpy)2(L)]2+ (isolated as the hexafluorophosphate salt), in which L=5,5′‐bis[3‐(1,4,7,10‐tetraoxatridec‐12‐enylphenyl)]‐2,2′‐bipyridine, undergoes intramolecular ring‐closing metathesis to yield a macrocycle which retains the exocyclic {Ru(bpy)2} unit. The poly(ethyleneoxy) domains in the latter macrocycle readily scavenge sodium ions, as proven by single‐crystal X‐ray diffraction and atomic absorption spectroscopy data for the bulk sample. In addition to the new compounds, a series of model complexes have been fully characterized, and representative single‐crystal X‐ray structural data are presented for iron(II) and ruthenium(II) acyclic and macrocyclic species.  相似文献   

9.
RuII compounds have been universally investigated due to their unique physical and chemical properties. In this paper, a new RuII compound based on 2,2′‐bipy and Hpmtz [2,2′‐bipy = 2,2′‐bipyridine, Hpmtz = 5‐(2‐pyrimidyl)‐1H‐tetrazole], namely [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O was prepared and characterized by elemental analysis, IR and single‐crystal X‐ray diffraction. [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O shows a mononuclear structure and forms a three‐dimensional network by non‐classic hydrogen bonds. The ability of generation of ROS (reactive oxygen species) makes it has a low phototoxicity IC50 (half‐maximal inhibitory concentration) after Xenon lamp irradiation on Hela cells in vitro. The results demonstrate that [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O with high light toxicity and low dark toxicity may be a potential candidate for photodynamic therapy.  相似文献   

10.
Complexes of the type [Ru(bxbg)2(N‐N)]2+, where N‐N denotes 2,2′‐bipyridine (bpy) ( 1 ), 1,10‐phenanthroline (phen) ( 2 ), dipyrido[3,2‐d:2′,3‐f] quinoxaline (dpq) ( 3 ), and dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz) ( 4 ), incorporating bis(o‐xylene)bipyridine‐glycoluril (bxbg) as an ancillary “molecular clip” ligand, have been synthesized and characterized. These ruthenium(II) complexes of bis(o‐xylene)bipyridine‐glycoluril self‐associate in water through specific molecular recognition processes to form polycationic arrays. These arrays containing electrostatic binders as well as intercalator ligands at micromolar doses rapidly condense free DNA into globular nanoparticles of various sizes. The DNA condensation induced by these complexes has been investigated by electrophoretic mobility assay, dynamic light scattering, and transmission electron microscopy. The cellular uptake of complex–DNA condensates and the low cytotoxicity of these complexes satisfy the requirements of a gene vector.  相似文献   

11.
Novel luminescence‐functionalized metal–organic frameworks (MOFs) with superior electrogenerated chemiluminescence (ECL) properties were synthesized based on zinc ions as the central ions and tris(4,4′‐dicarboxylicacid‐2,2′‐bipyridyl)ruthenium(II) dichloride ([Ru(dcbpy)3]2+) as the ligands. For potential applications, the synthesized MOFs were used to fabricate a “signal‐on” ECL immunosensor for the detection of N‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP). As expected, enhanced ECL signals were obtained through a simple fabrication strategy because luminescence‐functionalized MOFs not only effectively increased the loading of [Ru(dcbpy)3]2+, but also served as a loading platform in the ECL immunosensor. Furthermore, the proposed ECL immunosensor had a wide linear range from 5 pg mL?1 to 25 ng mL?1 and a relatively low detection limit of 1.67 pg mL?1 (signal/noise=3). The results indicated that luminescence‐functionalized MOFs provided a novel amplification strategy in the construction of ECL immunosensors and might have great prospects for application in bioanalysis.  相似文献   

12.
The title ionic compound, [Ni(C12H12N2)(H2O)4]SO4·H2O, is composed of an NiII cation coordinated by a chelating 4,4′‐dimethyl‐2,2′‐bipyridine ligand via its two N atoms [mean Ni—N = 2.056 (2) Å] and by four aqua ligands [mean Ni—O = 2.073 (9) Å], the net charge being balanced by an external sulfate anion. The whole structure is stabilized by a solvent water molecule. Even though the individual constituents are rather featureless, they generate an extremely complex supramolecular structure consisting of a central hydrogen‐bonded two‐dimensional hydrophilic nucleus made up of complex cations, sulfate anions and coordinated and solvent water molecules, with pendant hydrophobic 4,4′‐dimethyl‐2,2′‐bipyridine ligands which interact laterally with their neighbours viaπ–π interactions. The structure is compared with closely related analogues in the literature.  相似文献   

13.
Two new mixed-ligand ruthenium(Ⅱ) complexes,Ru(dcbpy)-(LL)NCS)2[where dcbpy=4,4‘-dicarboxyl-2,2‘‘-bipyridine,LL=4,4‘-bis(N-methyl-anilinomethyl)-2,2‘‘-bipyridine(2)],were synthesized,and the tphotophysical properties of these complexes were studied.The metal-to-ligand charge transfer (MLCT) transitions of these complexes exhibited solvatochromic effect due to the existence of NCS ligands.The MLCT energies also strongly depend on the pH values of the solutions because of protonation and deprotonation of the carboxyl groups.The pKa values of the ground state,4.0 for 1 and 3.8 for 2,were obtained from the titration curves.The photoelectrochemical properties of 1 and 2 as sensitizers in sandwich-type solar cells have been studied.Complex 1 exhibited better photoelectrochemical behavior than complex 2 as expected.It was proved that the design of mixed-ligand complex by introducing electron donating group in one of the ligands should be a promising approach.  相似文献   

14.
A mononuclear‐cobalt(II)‐substituted silicotungstate, K10[Co(H2O)2(γ‐SiW10O35)2] ? 23 H2O (POM‐ 1 ), has been evaluated as a light‐driven water‐oxidation catalyst. With in situ photogenerated [Ru(bpy)3]3+ (bpy=2,2′‐bipyridine) as the oxidant, quite high catalytic turnover number (TON; 313), turnover frequency (TOF; 3.2 s?1), and quantum yield (ΦQY; 27 %) for oxygen evolution at pH 9.0 were acquired. Comparison experiments with its structural analogues, namely [Ni(H2O)2(γ‐SiW10O35)2]10? (POM‐ 2 ) and [Mn(H2O)2(γ‐SiW10O35)2]10? (POM‐ 3 ), gave the conclusion that the cobalt center in POM‐ 1 is the active site. The hydrolytic stability of the title polyoxometalate (POM) was confirmed by extensive experiments, including UV/Vis spectroscopy, linear sweep voltammetry (LSV), and cathodic adsorption stripping analysis (CASA). As the [Ru(bpy)3]2+/visible light/sodium persulfate system was introduced, a POM–photosensitizer complex formed within minutes before visible‐light irradiation. It was demonstrated that this complex functioned as the active species, which remained intact after the oxygen‐evolution reaction. Multiple experimental parameters were investigated and the catalytic activity was also compared with the well‐studied POM‐based water‐oxidation catalysts (i.e., [Co4(H2O)2(α‐PW9O34)2]10? (Co4‐POM) and [CoIIICoII(H2O)W11O39]7? (Co2‐POM)) under optimum conditions.  相似文献   

15.
We report the rational design of metal–organic layers (MOLs) that are built from [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and Ir[bpy(ppy)2]+‐ or [Ru(bpy)3]2+‐derived tricarboxylate ligands (Hf‐BPY‐Ir or Hf‐BPY‐Ru; bpy=2,2′‐bipyridine, ppy=2‐phenylpyridine) and their applications in X‐ray‐induced photodynamic therapy (X‐PDT) of colon cancer. Heavy Hf atoms in the SBUs efficiently absorb X‐rays and transfer energy to Ir[bpy(ppy)2]+ or [Ru(bpy)3]2+ moieties to induce PDT by generating reactive oxygen species (ROS). The ability of X‐rays to penetrate deeply into tissue and efficient ROS diffusion through ultrathin 2D MOLs (ca. 1.2 nm) enable highly effective X‐PDT to afford superb anticancer efficacy.  相似文献   

16.
5‐Ethynyl‐2,2′‐bipyridine ( 1 ; bpyC≡CH) polymerized in the presence of catalytic amounts of [RhF(COD)(PPh3)] or [Rh(μ‐OH)(COD)]2 (COD = 1,5‐cyclooctadiene) in 74–91% yields. In contrast, [Rh(μ‐X)(NBD)]2 (X = Cl or OMe; NBD = norbornadiene) did not catalyze the polymerization of 1 or gave low yields of the polymer. The obtained polymer, poly(5‐ethynyl‐2,2′‐bipyridine) [ 2 ; (bpyC?CH)n], was highly stereoregular with a predominant cis–transoidal geometry. Random copolyacetylenes containing the 2,2′‐bipyridyl group with improved solubility in organic solvents were obtained by the treatment of a mixture of 1 and phenylacetylene ( 3 ) or 1‐ethynyl‐4‐n‐pentyl‐benzene with catalytic amounts of [RhF(COD)(PPh3)]. A block copolymer of 1 and 3 was prepared by the addition of 1 to a poly(phenylacetylene) containing a living end. The reaction of 2 with [Mo(CO)6] produced an insoluble polymer containing [Mo(CO)4(bpy)] groups, whereas with [RuCl2(bpy)2] or [Ru(bpy)2(CH3COCH3)2](CF3SO3)2, it gave soluble metal–polymer complexes containing [Ru(bpy)3]2+ groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:3167–3177, 2005  相似文献   

17.
Detailed investigations of a photocatalytic system capable of producing hydrogen under pre‐catalytic aerobic conditions are reported. This system consists of the NHC precursor chromophore [Ru(tbbpy)2(RR′ip)][PF6]3 (abbreviated as Ru(RR′ip)[PF6]3; tbbpy=4,4′‐di‐tert‐butyl‐2,2′‐bipyridine, RR′ip=1,3‐disubstituted‐1H‐imidazo[4,5‐f][1,10]phenanthrolinium), the reduction catalyst Co(dmgH)2 (dmgH=dimethylglyoximato), and the electron donor ascorbic acid (AA). Screening studies with respect to solvent, cobaloxime catalyst, electron donor, pH, and concentrations of the individual components yielded optimized photocatalytic conditions. The system shows high activity based on Ru, with turnover numbers up to 2000 under oxygen‐free and pre‐catalytic aerobic conditions. The turnover frequency in the latter case was even higher than that for the oxygen‐free catalyst system. The Ru complexes show high photostability and their first excited state is primarily located on the RR′ip ligand. X‐ray crystallographic analysis of the rigid cyclophane‐type ligand dd(ip)2(Br)2 (dd(ip)2=1,1′,3,3′‐bis(2,3,5,6‐tetramethyl‐1,4‐phenylene)bis(methylene)bis(1H‐imidazo[4,5‐f][1,10]phenanthrolinium)) and the catalytic activity of its Ru complex [{(tbbpy)2Ru}2(μ‐dd(ip)2)][PF6]6 (abbreviated as Ru2(dd(ip)2)[PF6]6) suggest an intermolecular catalytic cycle.  相似文献   

18.
The reaction of NiCl2, K2C2O4·H2O and 2,2′‐bipyridine (bpy) in water–ethanol solution at 281 K yields light‐purple needles of the new pentahydrate of bis(2,2′‐bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep‐pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán‐Miralles & Beitia (1995), Polyhedron, 14 , 2863–2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates. The complex molecules are involved in an extended system of hydrogen bonds with the solvent water molecules. Additionally, π–π interactions also contribute to the stabilization of the extended structure. The dehydration of the pentahydrate starts at 323 K and proceeds in at least two steps as determined by thermal analysis.  相似文献   

19.
Light‐driven water splitting was achieved using a dye‐sensitized mesoporous oxide film and the oxidation of bromide (Br?) to bromine (Br2) or tribromide (Br3?). The chemical oxidant (Br2 or Br3?) is formed during illumination at the photoanode and used as a sacrificial oxidant to drive a water oxidation catalyst (WOC), here demonstrated using [Ru(bda)(pic)2], ( 1 ; pic=picoline, bda=2,2′‐bipyridine‐6,6′‐dicarboxylate). The photochemical oxidation of bromide produces a chemical oxidant with a potential of 1.09 V vs. NHE for the Br2/Br? couple or 1.05 V vs. NHE for the Br3?/Br? couple, which is sufficient to drive water oxidation at 1 (RuV/IV≈1.0 V vs. NHE at pH 5.6). At pH 5.6, using a 0.2 m acetate buffer containing 40 mm LiBr and the [Ru(4,4′‐PO3H2‐bpy)(bpy)2]2+ ( RuP 2+, bpy=2,2′‐bipyridine) chromophore dye on a SnO2/TiO2 core–shell electrode resulted in a photocurrent density of around 1.2 mA cm?2 under approximately 1 Sun illumination and a Faradaic efficiency upon addition of 1 of 77 % for oxygen evolution.  相似文献   

20.
Tris(2,2′‐bipyridine)ruthenium(II) ([Ru(bpy)3]2+) is one of the most extensively studied and used electrochemiluminescent (ECL) compounds owing to its superior properties, which include high sensitivity and stability under moderate conditions in aqueous solution. In this paper we present a simple method for the preparation of [Ru(bpy)3]2+‐containing microstructures based on electrostatic assembly. The formation of such microstructures occurs in a single process by direct mixing of aqueous solutions of [Ru(bpy)3]Cl2 and K3[Fe(CN)6] at room temperature. The electrostatic interactions between [Ru(bpy)3]2+ cations and [Fe(CN)6]3? anions cause them to assemble into the resulting microstructures. Both the molar ratio and concentration of reactants were found to have strong influences on the formation of these microstructures. Most importantly, the resulting [Ru(bpy)3]2+‐containing microstructures exhibit excellent ECL behavior and, therefore, hold great promise for solid‐state ECL detection in capillary electrophoresis (CE) or CE microchips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号