首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluation of three subclasses of boron difluoride formazanate complexes bearing o‐, m‐, and p‐anisole N‐aryl substituents (Ar) as readily accessible alternatives to boron dipyrromethene (BODIPY) dyes for cell imaging applications is described. While the wavelengths of maximum absorption (λmax) and emission (λem) observed for each subclass of complexes, which differed by their carbon‐bound substituents (R), were similar, the emission quantum yields for 7 a – c (R=cyano) were enhanced relative to 8 a – c (R=nitro) and 9 a – c (R=phenyl). Complexes 7 a – c and 8 a – c were also significantly easier to reduce electrochemically to their radical anion and dianion forms compared to 9 a – c . Within each subclass, the o‐substituted derivatives were more difficult to reduce, had shorter λmax and λem, and lower emission quantum yields than the p‐substituted analogues as a result of sterically driven twisting of the N‐aryl substituents and a decrease in the degree of π‐conjugation. The m‐substituted complexes were the least difficult to reduce and possessed intermediate λmax, λem, and quantum yields. The complexes studied also exhibited large Stokes shifts (82–152 nm, 2143–5483 cm?1). Finally, the utility of complex 7 c (Ar=p‐anisole, R=cyano), which can be prepared for just a few dollars per gram, for fluorescence cell imaging was demonstrated. The use of 7 c and 4′,6‐diamino‐2‐phenylindole (DAPI) allowed for simultaneous imaging of the cytoplasm and nucleus of mouse fibroblast cells.  相似文献   

2.
The geometric and electronic structures and photophysical properties of anilido‐pyridine boron difluoride dyes 1 – 4 , a series of scarce 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) derivatives with large Stokes shift, are investigated by employing density functional theory (DFT) and time‐dependent DFT (TD‐DFT) calculations to shed light on the origin of their large Stokes shifts. To this end, a suitable functional is first determined based on functional tests and a recently proposed index—the charge‐transfer distance. It is found that PBE0 provides satisfactory overall results. An in‐depth insight into Huang–Rhys (HR) factors, Wiberg bond indices, and transition density matrices is provided to scrutinize the geometric distortions and the character of excited states pertaining to absorption and emission. The results show that the pronounced geometric distortion due to the rotation of unlocked phenyl groups and intramolecular charge transfer are responsible for the large Stokes shift of 1 and 2 , while 3 shows a relatively blue‐shifted emission wavelength due to its mild geometric distortion upon photoemission, although it has a comparable energy gap to 1 . Finally, compound 4 , which is designed to realize the rare red emission in BODIPY derivatives, shows desirable and expected properties, such as high Stokes shift (4847 cm?1), red emission at 660 nm, and reasonable fluorescence efficiency. These properties give it great potential as an ideal emitter in organic light‐emitting diodes. The theoretical results could complement and assist in the development of BODIPY‐based dyes with both large Stokes shift and high quantum efficiency.  相似文献   

3.
Two‐photon microscopy is a powerful tool for studying biological systems. In search of novel two‐photon absorbing dyes for bioimaging, we synthesized a new anthracene‐based dipolar dye (anthradan) and evaluated its two‐photon absorbing and imaging properties. The new anthradan, 9,10‐bis(o‐dimethoxy‐phenyl)‐anthradan, absorbs and emits at longer wavelengths than acedan, a well‐known two‐photon absorbing dye. It is also stable under two‐photon excitation conditions and biocompatible, and thus used for two‐photon imaging of mouse organ tissues to show bright, near‐red fluorescence along with negligible autofluorescence. Such an anthradan thus holds promise as a new class of two‐photon absorbing dyes for the development of fluorescent probes and tags for biological systems.  相似文献   

4.
Three rationally designed polar derivatives of diketopyrrolopyrrole consisting of 1,3‐dimethylimidazolium cationic units and benzene, thiophene, or furan rings as π spacers were synthesized and thoroughly studied. The obtained salts are soluble in polar organic solvents and show satisfactory solubility in water, which makes them suitable for the applications in bioimaging. Photophysical measurements revealed that the obtained derivatives are characterized by strong absorption and good fluorescence quantum yields. The corresponding two‐photon properties were also examined and showed that the synthesized salts exhibit large two‐photon absorption cross‐sections reaching 4000 GM (GM=Goeppert‐Mayer unit, 1 GM=10?50 cm4 s photon?1) and very high two‐photon brightness values exceeding 2000 GM. It was demonstrated that these salts can be safely applied in two‐photon fluorescence microscopy for selective staining of mitochondria in living cells.  相似文献   

5.
Phthalazinone derivatives were designed as optical probes for one‐ and two‐photon fluorescence microscopy imaging. The design strategy involves stepwise extension and modification of pyridazinone by 1) expansion of pyridazinone to phthalazinone, a larger conjugated system, as the electron acceptor, 2) coupling of electron‐donating aromatic groups such as N,N‐diethylaminophenyl, thienyl, naphthyl, and quinolyl to the phthalazinone, and 3) anchoring of an alkyl chain to the phthalazinone with various terminal substituents such as triphenylphosphonio, morpholino, triethylammonio, N‐methylimidazolio, pyrrolidino, and piperidino. Theoretical calculations were utilized to verify the initial design. The desired fluorescent probes were synthesized by two different routes in considerable yields. Twenty‐two phthalazinone derivatives were synthesized and their photophysical properties were measured. Selected compounds were applied in cell imaging, and valuable information was obtained. Furthermore, the designed compounds showed excellent performance in two‐photon microscopic imaging of mouse brain slices.  相似文献   

6.
Quadrupolar oligothiophene chromophores composed of four to five thiophene rings with two terminal (E)‐dimesitylborylvinyl groups ( 4 V – 5 V ), and five thiophene rings with two terminal aryldimesitylboryl groups ( 5 B ), as well as an analogue of 5 V with a central EDOT ring ( 5 VE ), have been synthesized via Pd‐catalyzed cross‐coupling reactions in high yields (66–89 %). Crystal structures of 4 V , 5 B , bithiophene 2 V , and five thiophene‐derived intermediates are reported. Chromophores 4 V , 5 V , 5 B and 5 VE have photoluminescence quantum yields of 0.26–0.29, which are higher than those of the shorter analogues 1 V – 3 V (0.01–0.20), and short fluorescence lifetimes (0.50–1.05 ns). Two‐photon absorption (TPA) spectra have been measured for 2 V – 5 V , 5 B and 5 VE in the range 750–920 nm. The measured TPA cross‐sections for the series 2 V – 5 V increase steadily with length up to a maximum of 1930 GM. We compare the TPA properties of 2 V – 5 V with the related compounds 5 B and 5 VE , giving insight into the structure–property relationship for this class of chromophore. DFT and TD‐DFT results, including calculated TPA spectra, complement the experimental findings and contribute to their interpretation. A comparison to other related thiophene and dimesitylboryl compounds indicates that our design strategy is promising for the synthesis of efficient dyes for two‐photon‐excited fluorescence applications.  相似文献   

7.
Fluorescent probes have become an indispensable tool in the detection and imaging of biological and disease-related analytes due to their sensitivity and technical simplicity. In particular, fluorescent probes with far-red to near-infrared (FR-NIR) emissions are very attractive for biomedical applications. However, many available FR-NIR fluorophores suffer from small Stokes shifts and sometimes low quantum yields, resulting in self-quenching and low contrast. In this work, we describe the rational design and engineering of FR-NIR 2,4,6-triphenylpyrylium-based fluorophores ( TPP-Fluors ) with the help of theoretical calculations. Our strategy is based on the appending of electron-donating substituents and fusing groups onto 2,4,6-triphenylpyrylium. In contrast to the parent TPP with short emission wavelength, weak quantum yields, and low chemical stability, the obtained novel TPP-Fluors display some favorable properties, such as long-wavelength emission, large Stokes shifts, moderate to high quantum yields, and chemical stability. TPP-Fluors demonstrate their biological value as mitochondria-specific labeling reagents due to their inherently positive nature. In addition, TPP-Fluors can also be applied to develop ratiometric fluorescent probes, as the electron-donating ability of the 2,6-phenyl substituents is closely correlated with their emission wavelength. A proof-of-concept ratiometric probe has been developed by derivatizing the amino groups of TPP-Fluor for the detection and imaging of nitroreductase in vitro and in hypoxic cells.  相似文献   

8.
Intracellular viscosity is a crucial parameter that indicates the functioning of cells. In this work, we demonstrate the utility of TPE‐Cy, a cell‐permeable dye with aggregation‐induced emission (AIE) property, in mapping the viscosity inside live cells. Owing to the AIE characteristics, both the fluorescence intensity and lifetime of this dye are increased along with an increase in viscosity. Fluorescence lifetime imaging of live cells stained with TPE‐Cy reveals that the lifetime in lipid droplets is much shorter than that from the general cytoplasmic region. The loose packing of the lipids in a lipid droplet results in low viscosity and thus shorter lifetime of TPE‐Cy in this region. It demonstrates that the AIE dye could provide good resolution in intracellular viscosity sensing. This is also the first work in which AIE molecules are applied in fluorescence lifetime imaging and intracellular viscosity sensing.  相似文献   

9.
10.
Three water‐soluble tetracationic quadrupolar chromophores comprising two three‐coordinate boron π‐acceptor groups bridged by thiophene‐containing moieties were synthesised for biological imaging applications. Compound 3 containing the bulkier 5‐(3,5‐Me2C6H2)‐2,2′‐(C4H2S)2‐5′‐(3,5‐Me2C6H2) bridge is stable over a long period of time, exhibits a high fluorescence quantum yield and strong one‐ and two‐photon absorption (TPA), and has a TPA cross section of 268 GM at 800 nm in water. Confocal laser scanning fluorescence microscopy studies in live cells indicated localisation of the chromophore at the mitochondria; moreover, cytotoxicity measurements proved biocompatibility. Thus, chromophore 3 has excellent potential for one‐ and two‐photon‐excited fluorescence imaging of mitochondrial function in cells.  相似文献   

11.
Ten borylated bipyridines (BOBIPYs) have been synthesized and selected structural modifications have been made that allow useful structure–optical property relationships to be gathered. These systems have been further investigated using DFT calculations and spectroscopic measurements, showing blue to green fluorescence with quantum yields up to 41 %. They allow full mapping of the structure to determine where selected functionalities can be implemented, to tune the optical properties or to incorporate linking groups. The best derivative was thus functionalised with an alkyne linker, which would enable further applications through click chemistry and in this optic, the stability of the fluorophores has been evaluated.  相似文献   

12.
13.
A 2,6‐distyryl‐substituted boradiazaindacene (BODIPY) dye and a new series of 2,6‐p‐dimethylaminostyrene isomers containing both α‐ and β‐position styryl substituents were synthesized by reacting styrene and p‐dimethylaminostyrene with an electron‐rich diiodo‐BODIPY. The dyes were characterized by X‐ray crystallography and NMR spectroscopy and their photophysical properties were investigated and analyzed by carrying out a series of theoretical calculations. The absorption spectra contain markedly redshifted absorbance bands due to conjugation between the styryl moieties and the main BODIPY fluorophore. Very low fluorescence quantum yields and significant Stokes shifts are observed for 2,6‐distyryl‐substituted BODIPYs, relative to analogous 3,5‐distyryl‐ and 1,7‐distyryl‐substituted BODIPYs. Although the fluorescence of the compound with β‐position styryl substituents on both pyrrole moieties and one with both β‐ and α‐position substituents was completely quenched, the compound with only α‐position substituents exhibits weak emission in polar solvents, but moderately intense emission with a quantum yield of 0.49 in hexane. Protonation studies have demonstrated that these 2,6‐p‐dimethylaminostyrene isomers can be used as sensors for changes in pH. Theoretical calculations provide strong evidence that styryl rotation and the formation of non‐emissive charge‐separated S1 states play a pivotal role in shaping the fluorescence properties of these dyes. Molecular orbital theory is used as a conceptual framework to describe the electronic structures of the BODIPY core and an analysis of the angular nodal patterns provides a reasonable explanation for why the introduction of substituents at different positions on the BODIPY core has markedly differing effects.  相似文献   

14.
The synthesis, linear photophysical, two‐photon absorption (2PA), femtosecond transient absorption, and superfluorescence properties of a new symmetrical squaraine derivative ( 1 ) are reported. Steady‐state linear spectral and photochemical properties, fluorescence lifetimes, and excitation anisotropy of 1 were investigated in various organic solvents. High fluorescence quantum yields (≈0.7) and very high photostability (photodecomposition quantum yields ≈10?6–10?8) were observed. An open‐aperture Z‐scan method was used to obtain 2PA spectra of 1 over a broad spectral range (maximum 2PA cross section ≈1000 GM). Excited‐state absorption (ESA) and gain was observed by femtosecond transient absorption spectroscopy, in which both reached a maximum at approximately 500 fs. Squaraine 1 exhibits efficient superfluorescence. The quantum chemical study of 1 revealed the simulated vibronic nature of the 1PA and 2PA spectra were in good agreement with experimental data; this may provide the ability to predict potential advanced photonic materials.  相似文献   

15.
The synthesis, crystal and electronic structures, and one‐ and two‐photon absorption properties of two quadrupolar fluorenyl‐substituted tetraphenyl carbo‐benzenes are described. These all‐hydrocarbon chromophores, differing in the nature of the linkers between the fluorenyl substituents and the carbo‐benzene core (C?C bonds for 3 a , C?C?C?C expanders for 3 b ), exhibit quasi–superimposable one‐photon absorption (1PA) spectra but different two‐photon absorption (2PA) cross‐sections σ2PA. Z‐scan measurements (under NIR femtosecond excitation) indeed showed that the C?C expansion results in an approximately twofold increase in the σ2PA value, from 336 to 656 GM (1 GM=10?50 cm4 s molecule?1 photon?1) at λ=800 nm. The first excited states of Au and Ag symmetry accounting for 1PA and 2PA, respectively, were calculated at the TDDFT level of theory and used for sum‐over‐state estimations of σ2PA(λi), in which λi=2 hc/Ei, h is Planck’s constant, c is the speed of light, and Ei is the energy of the 2PA‐allowed transition. The calculated σ2PA values of 227 GM at 687 nm for 3 a and 349 GM at 708 nm for 3 b are in agreement with the Z‐scan results.  相似文献   

16.
Photoactivatable (caged) fluorophores are widely used in chemistry, materials, and biology. However, the development of such molecules exhibiting photoactivable solid‐state fluorescence is still challenging due to the aggregation‐caused quenching (ACQ) effect of most fluorophores in their aggregate or solid states. In this work, we developed caged salicylaldehyde hydrazone derivatives, which are of aggregation‐induced emission (AIE) characteristics upon light irradiation, as efficient photoactivatable solid‐state fluorophores. These compounds displayed multiple‐color emissions and ratiometric (photochromic) fluorescence switches upon wavelength‐selective photoactivation, and were successfully applied for photopatterning and photoactivatable cell imaging in a multiple‐color and stepwise manner.  相似文献   

17.
18.
Tetrameric porphyrin formation of 2‐hydroxymethylpyrrole fused with porphyrins through a bicyclo[2.2.2]octadiene unit gave bicyclo[2.2.2]octadiene‐fused porphyrin pentamers. Thermal conversion of the pentamers gave fully π‐conjugated cruciform porphyrin pentamers fused with benzene units in quantitative yields. UV/Vis spectra of fully π‐conjugated porphyrin pentamers showed one very strong Q absorption and were quite different from those of usual porphyrins. From TD‐DFT calculations, the HOMO level is 0.49 eV higher than the HOMO?1 level. The LUMO and LUMO+1 levels are very close and are lower by more than 0.27 eV than those of other unoccupied MOs. The strong Q absorption was interpreted as two mutually orthogonal single‐electron transitions (683 nm: 86 %, HOMO→LUMO; 680 nm: 86 %, HOMO→LUMO+1). The two‐photon absorption (TPA) cross section value (σ(2)) of the benzene‐fused porphyrin pentamer was estimated to be 3900 GM at 1500 nm, which is strongly correlated with a cruciform molecular structure with multidirectional π‐conjugation pathways.  相似文献   

19.
Action spectroscopy has emerged as an analytical tool to probe excited states in the gas phase. Although comparison of gas‐phase absorption properties with quantum‐chemical calculations is, in principle, straightforward, popular methods often fail to describe many molecules of interest—such as xanthene analogues. We, therefore, face their nano‐ and picosecond laser‐induced photofragmentation with excited‐state computations by using the CC2 method and time‐dependent density functional theory (TDDFT). Whereas the extracted absorption maxima agree with CC2 predictions, the TDDFT excitation energies are blueshifted. Lowering the amount of Hartree–Fock exchange in the DFT functional can reduce this shift but at the cost of changing the nature of the excited state. Additional bandwidth observed in the photofragmentation spectra is rationalized in terms of multiphoton processes. Observed fragmentation from higher‐lying excited states conforms to intense excited‐to‐excited state transitions calculated with CC2. The CC2 method is thus suitable for the comparison with photofragmentation in xanthene analogues.  相似文献   

20.
Two low‐symmetry phthalocyanines (Pcs) substituted with thiophene units at the non‐peripheral (α) and peripheral (β) positions were synthesized and their optical, electronic‐structure, and electrochemical properties were investigated. The substitution of thiophene units at the α positions of the phthalocyanine skeleton resulted in a red shift of the Q band and significantly modified the molecular‐orbital electronic distributions just below the HOMO and just above the LUMO, with distortion of the typical Gouterman four‐orbital arrangement of MOs. Two amphiphilic Ω‐shaped ZnPcs ( αPcS1 and αPcS2 ) bearing a π‐conjugated side chain with an adsorption site at an α position of the Pc macrocycle were synthesized as sensitizers for dye‐sensitized solar cells (DSSCs). The absorption spectra of αPcS1 and αPcS2 showed red shifted Q bands and a broad band from 350 to 550 nm assignable to the intramolecular charge‐transfer transition from the ZnPc core to the side chains. Time‐dependent DFT calculations provided a clear interpretation of the effect of the thiophene conjugation on the typical phthalocyanine core π MOs. Compound αPcS1 was used as a light‐harvesting dye on a TiO2 electrode for a DSSC, which showed a panchromatic response in the range 400–800 nm with a power conversion efficiency of 5.5 % under one‐sun conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号