首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, lithium aluminium silicide (15/3/6), crystallizes in the hexagonal centrosymmetric space group P63/m. The three‐dimensional structure of this ternary compound may be depicted as two interpenetrating lattices, namely a graphite‐like Li3Al3Si6 layer and a distorted diamond‐like lithium lattice. As is commonly found for LiAl alloys, the Li and Al atoms are found to share some crystallographic sites. The diamond‐like lattice is built up of Li cations, and the graphite‐like anionic layer is composed of Si, Al and Li atoms in which Si and Al are covalently bonded [Si—Al = 2.4672 (4) Å].  相似文献   

2.
The need to improve electrodes and Li‐ion conducting materials for rechargeable all‐solid‐state batteries has drawn enhanced attention to the investigation of lithium‐rich compounds. The study of the ternary system Li‐Si‐P revealed a series of new compounds, two of which, Li8SiP4 and Li2SiP2, are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7)×10?6 Scm?1 at 0 °C to 1.2(2)×10?4 Scm?1 at 75 °C (Li8SiP4) and from 6.1(7)×10?8 Scm?1 at 0 °C to 6(1)×10?6 Scm?1 at 75 °C (Li2SiP2), as determined by impedance measurements. Temperature‐dependent solid‐state 7Li NMR spectroscopy revealed low activation energies of about 36 kJ mol?1 for Li8SiP4 and about 47 kJ mol?1 for Li2SiP2. Both compounds were structurally characterized by X‐ray diffraction analysis (single crystal and powder methods) and by 7Li, 29Si, and 31P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP4 anions and Li counterions. Li8SiP4 contains isolated SiP4 units surrounded by Li atoms, while Li2SiP2 comprises a three‐dimensional network based on corner‐sharing SiP4 tetrahedra, with the Li ions located in cavities and channels.  相似文献   

3.
The development of safe and long‐lasting all‐solid‐state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic‐scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long‐range as well as short‐range Li ion dynamics in the glass‐ceramic Li7P3S11. Li+ diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li+ diffusivity, which is reflected in a so‐called diffusion‐induced 6Li NMR spin‐lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×108 s?1, which corresponds to a Li+ ion conductivity in the order of 10?4 to 10?3 S cm?1. Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7P3S11. In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through‐going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7P3S11 crystallites. As a result of this, long‐range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long‐range ionic conduction. If we are to succeed in solid‐state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation of samples that are free of any amorphous regions that block fast ion transport.  相似文献   

4.
The ion conductors Li4+xAlxSi1‐xO4‐yLi3PO4 (x = 0 to 0.5, y = 0 to 0.6) were prepared by the Sol‐Gel method. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The conductivity and sinterability increased when y increased from 0 to 0.4 in the Li4+xAlxSi1‐xO4‐yLi3PO4. The particle size of the powder samples is about 0.13 μm. The maximum conductivity at 20 °C is 3.128 × 10?5s cm?1 for Li4.4Al0.4Si0.6O4‐0.4 Li3PO4.  相似文献   

5.
The compounds Li8EN2 with E = Se, Te were obtained in form of orange microcrystalline powders from reactions of Li2E with Li3N. Single crystal growth of Li8SeN2 additionally succeeded from excess lithium. The crystal structures were refined using single‐crystal X‐ray diffraction as well as X‐ray and neutron powder diffraction data (I41md, No. 109, Z = 4, Se: a = 7.048(1) Å, c = 9.995(1) Å, Te: a = 7.217(1) Å, c = 10.284(1) Å). Both compounds crystallize as isotypes with an anionic substructure motif known from cubic Laves phases and lithium distributed over four crystallographic sites in the void space of the anionic framework. Neutron powder diffraction pattern recorded in the temperature range from 3 K to 300 K and X‐ray diffraction patterns using synchrotron radiation taken from 300 K to 1000 K reveal the structural stability of both compounds in the studied temperature range until decomposition. Motional processes of lithium atoms in the title compounds were revealed by temperature dependent NMR spectroscopic investigations. Those are indicated by significant changes of the 7Li NMR signals. Lithium motion starts for Li8SeN2 above 150 K whereas it is already present in Li8TeN2 at this temperature. Quantum mechanical calculations of NMR spectroscopic parameters reveal clearly different environments of the lithium atoms determined by the electric field gradient, which are sensitive to the anisotropy of charge distribution at the nuclear sites. With respect to an increasing coordination number according to 2 + 1, 3, 3 + 1, and 4 for Li(3), Li(4), Li(2), and Li(1), respectively, the values of the electric field gradients decrease. Different environments of lithium predicted by quantum mechanical calculations are confirmed by 7Li NMR frequency sweep experiments at low temperatures.  相似文献   

6.
The syntheses and single‐crystal and electronic structures of three new ternary lithium rare earth germanides, RE5−xLixGe4 (RE = Nd, Sm and Gd; x≃ 1), namely tetrasamarium lithium tetragermanide (Sm3.97Li1.03Ge4), tetraneodymium lithium tetragermanide (Nd3.97Li1.03Ge4) and tetragadolinium lithium tetragermanide (Gd3.96Li1.03Ge4), are reported. All three compounds crystallize in the orthorhombic space group Pnma and adopt the Gd5Si4 structure type (Pearson code oP36). There are six atoms in the asymmetric unit: Li1 in Wyckoff site 4c, RE1 in 8d, RE2 in 8d, Ge1 in 8d, Ge2 in 4c and Ge3 in 4c. One of the RE sites, i.e. RE2, is statistically occupied by RE and Li atoms, accounting for the small deviation from ideal RE4LiGe4 stoichiometry.  相似文献   

7.
The Li4+xMxSi4+xO4‐yLi2O (M=Al, B; x = 0 to 0.6, y = 0 to 0.5) ion conductors were prepared by the Sol‐Gel method and examined in detail. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The experimental results show that the conductivity and sinterability in creased with the amount of excess lithium oxide in the silicate. The Li2O phase acts as a flux to accelerate the sintering process and to obtain high conductivity of grain boundaries. The particle size of the sintered pellets is about 0.25 μm. The maximum conductivity at 200 °C is 5.40 × 10?3s cm?1 for Li4.4Al0.4 Si0.6O4‐0.3Li2O.  相似文献   

8.
Alloys from the ternary Li–Al–Sn system have been investigated with respect to possible applications as negative electrode materials in Li‐ion batteries. This led to the discovery of a new ternary compound, a superstructure of the Li13Sn5 binary compound. The ternary stannide, Li9Al4Sn5 (nonalithium tetraaluminium pentastannide; trigonal, P m 1, hP18 ), crystallizes as a new structure type, which is an ordered variant of the binary Li13Sn5 structure type. One Li and one Sn site have m . symmetry, and all other atoms occupy sites of 3m . symmetry. The polyhedra around all types of atoms are rhombic dodecahedra. The electronic structure was calculated by the tight‐binding linear muffin‐tin orbital atomic spheres approximation method. The electron concentration is higher around the Sn and Al atoms, which form an [Al4Sn5]m− polyanion.  相似文献   

9.
The new stannide Li2AuSn2 was prepared by reaction of the elements in a sealed tantalum tube in a resistance furnace at 970 K followed by annealing at 720 K for five days. Li2AuSn2 was investigated by X‐ray diffraction on powders and single crystals and the structure was refined from single‐crystal data: Z=4, I41/amd, a=455.60(7), c=1957.4(4) pm, wR2=0.0681, 278 F2 values, 10 parameters. The gold atoms display a slightly distorted tetrahedral tin coordination with Au? Sn distances of 273 pm. These tetrahedra are condensed through common corners leading to the formation of two‐dimensional AuSn4/2 layers. The latter are connected in the third dimension through Sn? Sn bonds (296 pm). The lithium atoms fill distorted hexagonal channels formed by the three‐dimensional [AuSn2] network. Modestly small 7Li Knight shifts are measured by solid‐state NMR spectroscopy that are consistent with a nearly complete state of lithium ionization. The noncubic local symmetry at the tin site is reflected by a nuclear electric quadrupolar splitting in the 119Sn Mössbauer spectra and a small chemical shift anisotropy evident from 119Sn solid‐state NMR spectroscopy. Variable‐temperature static 7Li solid‐state NMR spectra reveal motional narrowing effects at temperatures above 200 K, revealing lithium atomic mobility on the kHz time scale. Detailed lineshape as well as temperature‐dependent spin lattice relaxation time measurements indicate an activation energy of lithium motion of 27 kJ mol?1.  相似文献   

10.
Developing high‐performance all‐solid‐state batteries is contingent on finding solid electrolyte materials with high ionic conductivity and ductility. Here we report new halide‐rich solid solution phases in the argyrodite Li6PS5Cl family, Li6?xPS5?xCl1+x, and combine electrochemical impedance spectroscopy, neutron diffraction, and 7Li NMR MAS and PFG spectroscopy to show that increasing the Cl?/S2? ratio has a systematic, and remarkable impact on Li‐ion diffusivity in the lattice. The phase at the limit of the solid solution regime, Li5.5PS4.5Cl1.5, exhibits a cold‐pressed conductivity of 9.4±0.1 mS cm?1 at 298 K (and 12.0±0.2 mS cm?1 on sintering)—almost four‐fold greater than Li6PS5Cl under identical processing conditions and comparable to metastable superionic Li7P3S11. Weakened interactions between the mobile Li‐ions and surrounding framework anions incurred by substitution of divalent S2? for monovalent Cl? play a major role in enhancing Li+‐ion diffusivity, along with increased site disorder and a higher lithium vacancy population.  相似文献   

11.
《Solid State Sciences》2012,14(3):367-374
The ternary silicide La2Li2Si3 was synthesized from the elements in a sealed niobium tube. La2Li2Si3 was characterized by powder and single crystal X-ray diffraction: Ce2Li2Ge3 type, Cmcm, a = 450.03(8), b = 1880.3(4), c = 689.6(1) pm, wR2 = 0.0178, 597 F2 values, and 26 parameters. The La2Li2Si3 structure contains two crystallographically independent silicon sites, both in slightly distorted trigonal prismatic coordination. The Si1 atoms are located in condensed La6 prisms and form cis–trans chains (two-bonded silicon) with Si1–Si1 distances at 238 and 239 pm, indicating single bond character. The Si2 atoms are isolated within La2Li4 prisms. La2Li2Si3 might be formally considered as an electron precise Zintl phase with an electron partition (2La3+)(2Li+)(2Si12–)(Si24–). Electronic structure calculations show a trend in this direction based on a charge density analysis with large electron localization around the Si1–Si1 chains. The compound is found weakly metallic with chemical bonding reminiscent of LaSi and additional features brought in by Li and Si2. High resolution solid state 7Li and 29Si MAS-NMR spectra are in agreement with the crystal structural information, however, the 29Si resonance shifts observed suggest strong Knight shift contributions, at variance with the Zintl concept. Variable temperature solid state 7Li spectra indicate the absence of motional narrowing on the kHz timescale within the temperature range 300K < T < 400 K.  相似文献   

12.
The Li4.4Al0.4Si0.6O4‐xY2O3 (x = 0 to 0.5) ion conductors were prepared by the Sol‐Gel method and examined in detail. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The experimental results show that the conductivity and sinterability increased with the amount of excess Y2O3 in the silicate. The particle size of the powder samples is about 0.12 μm. The maximum conductivity at 16 °C is 2.925 × 10?5s·cm?1 for Li4.4Al0.4Si0.6O4‐0.3 Y2O3.  相似文献   

13.
The isotypic lithium rare‐earth oxonitridosilicates LiLn5Si4N10O (Ln = La, Pr) were synthesized at temperatures of 1200 °C in weld shut tantalum ampoules employing liquid lithium as flux. Thereby, a silicate substructure with a low degree of condensation was obtained. LiLa5Si4N10O crystallizes in space group P$\bar{1}$ [Z = 1, LiLa5Si4N10O: a = 5.7462(11), b = 6.5620(13), c = 8.3732(17) Å, α = 103.54(3), β = 107.77(3), γ = 94.30(3), wR2 = 0.0405, 1315 data, 96 parameters]. The nitridosilicate substructure consists of loop branched dreier single‐chains of vertex sharing SiN4 tetrahedra. Lattice energy calculations (MAPLE) and EDX measurements confirmed the electrostatic bonding interactions and the chemical compositions. The 7Li solid‐state MAS NMR investigation is reported.  相似文献   

14.
Li47B3P14N42, the first lithium nitridoborophosphate, is synthesized by two different routes using a Li3N flux enabling a complete structure determination by single‐crystal X‐ray diffraction data. Li47B3P14N42 comprises three different complex anions: a cyclic [P3N9]12−, an adamantane‐like [P4N10]10−, and the novel anion [P3B3N13]15−. [P3B3N13]15− is the first species with condensed B/N and P/N substructures. Rietveld refinement, 6Li, 7Li, 11B, and 31P solid‐state NMR spectroscopy, FTIR spectroscopy, EDX measurements, and elemental analyses correspond well with the structure model from single‐crystal XRD. To confirm the mobility of Li+ ions, their possible migration pathways were evaluated and the temperature‐dependent conductivity was determined by impedance spectroscopy. With the Li3N flux route we gained access to a new class of lithium nitridoborophosphates, which could have a great potential for unprecedented anion topologies with interesting properties.  相似文献   

15.
The mixed silicide‐germanides Li12Si7–xGex, Na7LiSi8–zGez, and Li3NaSi6–vGev which could serve as potential precursors for Si1–xGex materials were synthesized and characterized by X‐ray diffraction methods. The full solid solution series Li12Si7–xGex (0 ≤ x ≤ 7) is easily accessible from the elements and features preferential occupation of the more negatively charged crystallographic tetrel positions by Ge, which is the more electronegative element. In case of Na7LiSi8–zGez a broad solid solution range of 1.3 ≤ x ≤ 8 is available but the ternary silicide Na7LiSi8 could not be obtained by the tested methods of synthesis. The solubility of Ge in Li3NaSi6–vGev is highly limited to a maximum of v ≈ 0.5, and again the formally more negatively charged tetrel positions are preferred by Ge. Additionally, the two crystallographic Li positions in Li12Si7 with unusually large displacement parameters can be partially substituted by Na in Li12–yNaySi7 with 0 ≤ y ≤ 0.6. The statistical mixing of Li and Na in this solid solution contrasts the typical ordering of Li and Na in most ternary tetrelides.  相似文献   

16.
The isotypic nitridosilicates Li4Ca3Si2N6 and Li4Sr3Si2N6 were synthesized by reaction of strontium or calcium with Si(NH)2 and additional excess of Li3N in weld shut tantalum ampoules. The crystal structure, which has been solved by single‐crystal X‐ray diffraction (Li4Sr3Si2N6: C2/m, Z = 2, a = 6.1268(12), b = 9.6866(19), c = 6.2200(12) Å, β = 90.24(3)°, wR2 = 0.0903) is made up from isolated [Si2N6]10– ions and is isotypic to Li4Sr3Ge2N6. The bonding angels and distances within the edge‐sharing [Si2N6]10– double‐tetrahedra are strongly dependent on the lewis acidity of the counterions. This finding is discussed in relation to the compounds Ca5Si2N6 and Ba5Si2N6, which also exhibit isolated [Si2N6]10– ions.  相似文献   

17.
Lithiation and delithiation of nanosilicon anodes of 100–200 nm diameter have been probed by ex situ solid-state high-resolution 7Li nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) methods. Samples were charged within pouch cells up to capacities of 1,500 mAh/g at 0.1 C, and subsequently discharged at the same rate. The NMR spectra reveal important quantitative information on the local lithium environments during the various stages of the charging/discharging process. The TEM experiments show that the electrochemical lithiation of nanosilicon particles results in core-shell materials, consisting of LixSi shells surrounding a core of residual silicon. The NMR spectra yield approximate Li/Si ratios of the lithium silicides present in the shells, based on the distinct local environments of the various types of 7Li nuclei present. The combination of NMR with TEM gives important quantitative conclusions about the nature of the electrochemical lithiation process: Following the initial formation of the solid electrolyte interphase layer, which accounts for an irreversible capacity of 240 mAh/g, lithium silicide environments with intermediate Li concentrations (Li12Si7, Li7Si3, and Li13Si4) are formed at the 500 to 1,000 mAh/g range during the charging process. At a certain penetration depth, further lithiation does not progress any further toward the interior of the silicon particles but rather leads to the formation of increasing amounts of the lithium-richest silicide, Li15Si4-type environments. Delithiation does not result in the reappearance of the intermediate-stage phases but rather only changes the amount of Li15Si4 present, indicating no microscopic reversibility. Based on these results, a detailed quantitative model of nanophase composition versus penetration depth has been developed. The results indicate the power and potential of solid-state NMR spectroscopy for elucidating the charging/discharging mechanism of nano-Si anodes.  相似文献   

18.
Li7PS6 and Li7PSe6 belong to a class of new solids that exhibit high Li+ mobility. A series of quaternary solid solutions Li7PS6?xSex (0≤x≤6) were characterised by X‐ray crystallography and magic‐angle spinning nuclear magnetic resonance (MAS‐NMR) spectroscopy. The high‐temperature (HT) modifications were studied by single‐crystal investigations (both F$\bar 4$ 3m, Z=4, Li7PS6: a=9.993(1) Å, Li7PSe6: a=10.475(1) Å) and show the typical argyrodite structures with strongly disordered Li atoms. HT‐Li7PS6 and HT‐Li7PSe6 transform reversibly into low‐temperature (LT) modifications with ordered Li atoms. X‐ray powder diagrams show the structures of LT‐Li7PS6 and LT‐Li7PSe6 to be closely related to orthorhombic LT‐α‐Cu7PSe6. Single crystals of the LT modifications are not available due to multiple twinning and formation of antiphase domains. The gradual substitution of S by Se shows characteristic site preferences closely connected to the functionalities of the different types of chalcogen atoms (S, Se). High‐resolution solid‐state 31P NMR is a powerful method to differentiate quantitatively between the distinct (PS4?nSen)3? local environments. Their population distribution differs significantly from a statistical scenario, revealing a pronounced preference for P? S over P? Se bonding. This preference, shown for the series of LT samples, can be quantified in terms of an equilibrium constant specifying the melt reaction SeP+S2??SP+Se2?, prior to crystallisation. The 77Se MAS‐NMR spectra reveal that the chalcogen distributions in the second and third coordination sphere of the P atoms are essentially statistical. The number of crystallographically independent Li atoms in both LT modifications was analysed by means of 6Li{7Li} cross polarisation magic angle spinning (CPMAS).  相似文献   

19.
LiFePO4 is an important cathode material for lithium‐ion batteries. Regardless of the biphasic reaction between the insulating end members, LixFePO4, x≈0 and x≈1, optimization of the nanostructured architecture has substantially improved the power density of positive LiFePO4 electrode. The charge transport that occurs in the interphase region across the biphasic boundary is the primary stage of solid‐state electrochemical reactions in which the Li concentrations and the valence state of Fe deviate significantly from the equilibrium end members. Complex interactions among Li ions and charges at the Fe sites have made understanding stability and transport properties of the intermediate domains difficult. Long‐range ordering at metastable intermediate eutectic composition of Li2/3FePO4 has now been discovered and its superstructure determined, which reflected predominant polaron crystallization at the Fe sites followed by Li+ redistribution to optimize the Li? Fe interactions.  相似文献   

20.
The new lithium ionic conductors, thio-LISICON (LIthium SuperIonic CONductor), were found in the ternary Li2S-SiS2-Al2S3 and Li2S-SiS2-P2S5 systems. Their structures of new materials, Li4+xSi1−xAlxS4 and Li4−xSi1−xPxS4 were determined by X-ray Rietveld analysis, and the electric and electrochemical properties were studied by electronic conductivity, ac conductivity and cyclic voltammogram measurements. The structure of the host material, Li4SiS4 is related to the γ-Li3PO4-type structure, and when the Li+ interstitials or Li+ vacancies were created by the partial substitutions of Al3+ or P5+ for Si4+, large increases in conductivity occur. The solid solution member x=0.6 in Li4−xSi1−xPxS4 showed high conductivity of 6.4×10-4 S cm−1 at 27°C with negligible electronic conductivity. The new solid solution, Li4−xSi1−xPxS4, also has high electrochemical stability up to ∼5 V vs Li at room temperature. All-solid-state lithium cells were investigated using the Li3.4Si0.4P0.6S4 electrolyte, LiCoO2 cathode and In anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号