首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heat stroke is a life‐threatening condition, featuring a high body temperature and malfunction of many organ systems. The relationship between heat shock and lysosomes is poorly understood, mainly because of the lack of a suitable research approach. Herein, by incorporating morpholine into a stable hemicyanine skeleton, we develop a new lysosome‐targeting near‐infrared ratiometric pH probe. In combination with fluorescence imaging, we show for the first time that the lysosomal pH value increases but never decreases during heat shock, which might result from lysosomal membrane permeabilization. We also demonstrate that this lysosomal pH rise is irreversible in living cells. Moreover, the probe is easy to synthesize, and shows superior overall analytical performance as compared to the existing commercial ones. This enhanced performance may enable it to be widely used in more lysosomal models of living cells and in further revealing the mechanisms underlying heat‐related pathology.  相似文献   

2.
The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso‐aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance.  相似文献   

3.
Fluorescence imaging is a promising tool for the visualization of biomolecules in living systems and there is great demand for new fluorescent dyes that absorb and emit in the near‐infrared (NIR) region. Herein, we constructed three new fluorescent dyes ( NBC dyes) based on keto‐benzo[h]coumarin ( k‐BC ) and benzopyrilium salts. These dyes showed large Stokes shifts (>100 nm) and NIR emission (>800 nm). The relationship between the structures and optical properties of these dyes was further investigated by using density functional theory calculations at the B3LYP/6‐3G level of theory. Fluorescence images indicated that the fabricated dyes exhibited good photostability and low cytotoxicity and, thus, have potential applications as imaging agents in living cells and animals.  相似文献   

4.
The preparation of highly water‐soluble and strongly fluorescent diketopyrrolopyrrole (DPP) dyes using an unusual taurine‐like sulfonated linker has been achieved. Exchanging a phenyl for a thienyl substituent shifts the emission wavelength to near λ=600 nm. The free carboxylic acid group present in these new derivatives was readily activated and the dyes were subsequently covalently linked to a model protein (bovine serum albumin; BSA). The bioconjugates were characterized by electronic absorption, fluorescence spectroscopy and MALDI‐TOF mass spectrometry, thus enabling precise determination of the labeling density (ratio DPP/BSA about 3 to 8). Outstanding values of fluorescence quantum yield (30 % to 59 %) for these bioconjugates are obtained. The photostability of these DPP dyes is considerably greater than that of fluorescein under the same irradiation conditions. Remarkably low detection limits between 80 and 300 molecules/μm2 were found for the BSA bioconjugates by fluorescence imaging with a epifluorescence microscope.  相似文献   

5.
A novel class of near‐infrared fluorescent contrast agents was developed. These agents target cartilage with high specificity and this property is inherent to the chemical structure of the fluorophore. After a single low‐dose intravenous injection and a clearance time of approximately 4 h, these agents bind to all three major types of cartilage (hyaline, elastic, and fibrocartilage) and perform equally well across species. Analysis of the chemical structure similarities revealed a potential pharmacophore for cartilage targeting. Our results lay the foundation for future improvements in tissue engineering, joint surgery, and cartilage‐specific drug development.  相似文献   

6.
Near‐infrared (NIR) imaging techniques have attracted significant attention for biological and medicinal applications due to the ability of NIR to penetrate deeply into tissues. However, there are very few stable, activatable molecular probes that can utilize NIR light in the wavelength range beyond 800 nm. Herein, we report a new activatable NIR system for photoacoustic imaging based on tautomeric benziphthalocyanines (BPcs). We found that the existence of a free hydroxyl group is crucial for NIR absorption of BPcs. Synthesized water‐soluble hydroxy BPcs exhibited high photostability and no fluorescence, which are desirable features for photoacoustic imaging. We synthesized BPcs in which the free hydroxyl group was masked by an esterase‐labile or an H2O2‐labile group. The photoacoustic signals of these hydroxy‐masked BPcs were increased upon NIR excitation at 880 nm in the presence of esterase or H2O2, respectively. These are rare examples of activatable probes utilizing NIR light at around 900 nm.  相似文献   

7.
Near‐infrared (NIR) fluorescent probes have attracted much attention, but despite the availability of various NIR fluorophores, only a few functional NIR probes, that is, probes whose absorption and/or fluorescence spectra change upon specific reaction with biomolecules, have been developed. However, functional probes operating in the NIR range that can be targeted to protons, metal ions, nitric oxide, β‐galactosidase, and cellular stress markers are expected to be effective for fluorescence imaging in vivo. This Focus Review concentrates on these functional NIR probes themselves, not their applications.  相似文献   

8.
Early detection of skin diseases is imperative for their effective treatment. However, fluorescence molecular probes that allow this are rare. The first activatable near‐infrared (NIR) fluorescent molecular probe is reported for sensitive imaging of keloid cells, skin cells from abnormal scar fibrous lesions. As keloid cells have high expression levels of fibroblast activation protein‐alpha (FAPα), the probe (FNP1) is designed to have a caged NIR dye and a FAPα‐cleavable peptide substrate linked by a self‐immolative segment. FNP1 can quickly and specifically turn on its fluorescence at 710 nm by 45‐fold in the presence of FAPα, allowing it to effectively recognize keloid cells from normal skin cells. Integration of FNP1 with a simple microneedle‐assisted topical application enables sensitive detection of keloid cells in metabolically‐active human skin tissue with a theoretical limit of detection down to 20 000 cells.  相似文献   

9.
9‐Alkyl xanthenones with different aliphatic pendant groups have been easily prepared by means of nucleophilic addition of the corresponding Grignard derivative to a tert‐butyldimethylsilyl ether (TBDMS)‐protected 3,6‐dihydroxy‐xanthenone. The photophysical behavior of the new dyes has been explored by using absorption, steady‐state‐, and time‐resolved fluorescence measurements. We determined the equilibrium constants, visible spectral characteristics, fluorescence quantum yield, and decay times. Remarkably, they retain similar fluorescent properties of fluorescein including the characteristic phosphate‐mediated excited‐state proton‐transfer (ESPT) reaction. 6‐Hydroxy‐9‐isopropyl‐3H‐xanthen‐3‐one ( 5 ) was investigated in living cells; it presented a good permeability and efficient accumulation inside the cytosol. For the first time, we reported that the requirement of an aryl group at C‐9 is no longer needed and new fluorescent sensors can be therefore easily developed.  相似文献   

10.
Thiophenols are highly toxic industrial materials that, once released, will accumulate in the environment, and ultimately in human bodies, thereby causing serious health problems. To achieve their selective and sensitive detection, a novel near‐infrared (NIR) fluorescent probe ( CCP‐1 ) from a focused library was developed for thiophenol species. Our studies show that CCP‐1 displays a thiophenol‐triggered 28‐fold fluorescence intensity enhancement at 706 nm, with a detection limit of 34 nm observed. It is also able to differentiate thiophenols from various other thiol‐containing analytes including hydrogen sulfide, hydrogen persulfide, and aliphatic thiols. In total, the desirable properties (e.g., excitation/emission in the NIR region, good cell‐membrane permeability, intracellular stability, and low cytotoxicity) make CCP‐1 a potential candidate for thiophenol detection both in vitro and in vivo. In addition, CCP‐1 , for the first time, successfully visualized thiophenols in mice models of thiophenol inhalation.  相似文献   

11.
12.
13.
NIRer there : Pyrrolopyrrole cyanine (PPCys) dyes, a new class of near‐infrared (NIR) fluorophores, are obtained by condensation of heteroarylacetonitrile and diketopyrrolopyrrole compounds (see picture). Complexation with BF2 or BPh2 yields strongly fluorescent, photostable NIR dyes that show high absorption cross‐sections and fluorescence quantum yields. Furthermore, alteration of the heterocycle can tune the main absorption between λ = 684 and 864 nm.

  相似文献   


14.
The development of robust photothermal agents for near‐infrared (NIR) imaging is a great challenge. Herein, we report the design and synthesis of a new photothermal agent, based on the aza‐boron‐dipyrromethene framework (azaBDP). This compound possessed excellent photostability and high photothermal‐conversion efficiency (50 %) under NIR laser irradiation. When the photothermal properties of this compound were utilized for tumor inhibition, stable long‐term fluorescence was observed in living animals. Photothermal treatment efficiently suppressed tumor growth, as evidenced by in vitro and in vivo experiments. Furthermore, NIR emission could be detected by using an imaging system and therapeutic self‐monitoring was achieved by using NIR imaging.  相似文献   

15.
16.
As selenocysteine (Sec) carries out the majority of the functions of the various Se‐containing species in vivo, it is of high importance to develop reliable and rapid assays with biocompatibility to detect Sec. Herein, an NIR fluorescent turn‐on probe for highly selective detection of selenol was designed and synthesized. The probe exhibits large turn‐on signal upon treatment with selenocysteine (R‐SeH), and it was further demonstrated that the new NIR fluorescent probe can be employed to image selenol in living animals.  相似文献   

17.
Simple, sensitive, and selective detection of specific biopolymers is critical in a broad range of biomedical and technological areas. We present a design of turn‐on near‐infrared (NIR) fluorescent probes with intrinsically high signal‐to‐background ratio. The fluorescent signal generation mechanism is based on the aggregation/de‐aggregation of phthalocyanine chromophores controlled by selective binding of small‐molecule “anchor” groups to a specific binding site of a target biopolymer. As a proof‐of‐concept, we demonstrate a design of a sensor for EGFR tyrosine kinase—an important target in cancer research. The universality of the fluorescent signal generation mechanism, as well as the dependence of the response selectivity on the choice of the small‐molecule “anchor” group, make it possible to use this approach to design reliable turn‐on NIR fluorescent sensors for detecting specific protein targets present in the low‐nanomolar concentration range.  相似文献   

18.
A polymeric thermosensor composed of the thermo‐responsive block copolymer Pluronic F127 (PF127) and the near‐infrared (NIR) dye Cy5.5 can simply monitor, image, and analyze temperature changes. The thermoprobe exhibited linear NIR fluorescent emission changes (see figure) over a broad temperature range (0–80 °C).

  相似文献   


19.
20.
Dihydroxybenziphthalocyanine 1 , with bulky aryloxy groups, has been synthesized and characterized by X‐ray crystallography, NMR and UV/Vis‐NIR spectroscopy, and theoretical calculations. Macrocycle 1 is the first example of an aromatic benziphthalocyanine with an 18π‐electron structure, and was found to exist as an equilibrium mixture of weakly aromatic and strongly aromatic tautomers. The aromaticity and near‐IR absorption can be controlled by chemical modification at the reactive resorcinol moiety and by variation of the solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号