首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The transition-metal-catalyzed [2+2+2] cyclotrimerization of a diyne and an alkyne provides a convergent route to highly-substituted aromatic rings. This reaction possesses distinct drawbacks, especially low chemo- and regioselectivities, which hamper its application in combinatorial synthesis. These problems have been solved by the development of solid-supported [2+2+2]-cycloaddition reactions. If conducted on a solid-support, this reaction enables rapid combinatorial access to diverse sets of carbo- and heterocyclic small-molecule arrays. The scope of this methodology has been investigated by examining different immobilization strategies, different diyne precursors, and a variety of functionalized alkyne reaction partners. Overall, isoindoline, phthalan, and indan libraries were assembled in good to excellent yields and with high purities.  相似文献   

3.
Alkene carbonylation reactions are important for the production of value‐added bulk and fine chemicals. Nowadays, all industrial carbonylation processes make use of highly toxic and flammable carbon monoxide. In fact, these properties impede the wider use of carbonylation reactions in industry and academia. Hence, performing carbonylations without the use of CO is highly desired and will contribute to the further advancement of sustainable chemistry. Although the use of carbon monoxide surrogates in alkene carbonylation reactions has been reported intermittently in the last 30 years, only recently has this area attracted significant interest. This Minireview summarizes carbonylation reactions of alkenes using different carbon monoxide surrogates.  相似文献   

4.
Reported herein is the novel gold‐catalyzed intermolecular [2+2+2] cycloaddition of ynamides with two discrete nitriles to form monomeric 4‐aminopyrimidines, which are pharmaceutically important structural motifs. The utility of this new cycloaddition is demonstrated by the excellent regioselectivity obtained using a variety of ynamides and nitriles.  相似文献   

5.
Herein, the concept of boronic acid catalysis (BAC) for the activation of unsaturated carboxylic acids is applied in several classic dipolar [3+2] cycloadditions involving azides, nitrile oxides, and nitrones as partners. These cycloadditions can be used to produce pharmaceutically interesting, small heterocyclic products, such as triazoles, isoxazoles, and isoxazolidines. These cycloadducts are formed directly and include a free carboxylic acid functionality that can be employed for further transformations, thereby avoiding prior masking or functionalization. In all cases, BAC provides faster reactions, under milder conditions, with much improved product yields and regioselectivities. In some instances, such as triazole formation from the reaction of azides with 2‐alkynoic acids, catalysis with ortho‐nitrophenylboronic acid circumvents the undesirable product decarboxylation observed when using thermal activation. By using NMR spectroscopic studies, the boronic acid catalyst was shown to provide activation by a LUMO‐lowering effect in the unsaturated carboxylic acid, likely via a monoacylated hemiboronic ester intermediate.  相似文献   

6.
In the presence of 2.5 mol % of [Pd(2)(dba)(3)] (dba=dibenzylideneacetone) and 5 mol % of PPh(3), nearly equimolar amounts of dimethyl nona-2,7-diyne-1,9-dioate derivatives (diyne diesters) and dialkyl acetylenedicarboxylates were allowed to react in toluene at 110 degrees C to afford [2+2+2] cycloadducts in moderate-to-good yields. Similarly, dimethyl trideca-2,7,12-triyne-1,13-dioate derivatives (triyne diesters) were catalytically transformed into phthalic acid ester analogues in excellent yields. To gain insight into the mechanism of these intramolecular alkyne cyclotrimerizations, stoichiometric reactions of [Pd(2)(dba)(3)] with a diyne diester and a triyne diester bearing ether tethers were conducted in acetone at room temperature to furnish an oligomeric bicyclopalladacyclopentadiene and a Pd(0) triyne complex, respectively. The structures of these novel complexes were unequivocally determined by Xray structure analysis. The isolated triyne complex was heated at 50 degrees C or treated with PPh(3) in acetone at room temperature to afford the arene product. Furthermore, the same complex catalyzed the triyne cyclization with or without PPh(3).  相似文献   

7.
It has been established that a cationic rhodium(I)/H8‐binap complex catalyzes the [3+2+2] cycloaddition of 1,6‐diynes with cyclopropylideneacetamides to produce cycloheptadiene derivatives through cleavage of cyclopropane rings. In contrast, a cationic rhodium(I)/(S)‐binap complex catalyzes the enantioselective [2+2+2] cycloaddition of terminal alkynes, acetylenedicarboxylates, and cyclopropylideneacetamides to produce spiro‐cyclohexadiene derivatives which retain the cyclopropane rings.  相似文献   

8.
Synthetic sequel : The transition‐metal‐catalyzed [2+2+2] cycloaddition is an established method for the construction of carbocyclic frameworks but is often plagued by poor selectivity. Recent literature paints a promising picture—a more general metal‐catalyzed [2+2+2] cycloaddition can be accomplished intermolecularly using three separate alkynes to furnish highly substituted arenas (see scheme).

  相似文献   


9.
10.
Tying up loose ends : Recent advances towards a development of novel transition‐metal‐catalyzed enantioselective [2+2+2] cycloadditions for the synthesis of biaryls are summarized in this Focus Review. Additionally, the enantioselective synthesis of axially chiral biaryls possessing non‐biaryl axial chirality is also presented. These novel asymmetric aromatization reactions allow the production of various axially chiral biaryl compounds with high enantioselectivity.

  相似文献   


11.
12.
Gold‐catalyzed cycloadditions of ynamides with azidoalkenes or 2H‐azirines give [3+2] or [4+3] formal cycloadducts of three classes. Cycloadditions of ynamides with 2H‐azirine species afford pyrrole products with two regioselectivities when the Cβ‐substituted 2H‐azirine is replaced from an alkyl (or hydrogen) with an ester group. For ynamides substituted with an electron‐rich phenyl group, their reactions with azidoalkenes proceed through novel [4+3] cycloadditions to deliver 1H‐benzo[d]azepine products instead.  相似文献   

13.
A Rh‐catalyzed intramolecular [3+2+2] cycloaddition is reported. The cycloaddition affords synthetically relevant 5,7,5‐fused tricyclic systems of type 2 from readily available dienyne precursors. The transformation takes place with moderate or good yields, high diastereoselectivity, and total chemoselectivity.  相似文献   

14.
15.
The synthesis of ortho-(trimethylsilyl)triphenylenyl triflates 7 is described. Fluoride-induced decomposition of these triflates leads to the generation of didehydrotriphenylenes (triphenylynes) 6. These arynes undergo [4+2] cycloadditions with dienes to afford the corresponding Diels-Alder adducts or palladium-catalyzed formal [2+2+2] cycloadditions to afford extended triphenylenes.  相似文献   

16.
Terminal alkenes are readily available functional groups which appear in α‐olefins produced by the chemical industry, and they appear in the products of many contemporary synthetic reactions. While the organic transformations that apply to alkenes are amongst the most studied reactions in all of chemical synthesis, the number of reactions that apply to nonactivated terminal alkenes in a catalytic enantioselective fashion is small in number. This Minireview highlights the cases where stereocontrol in catalytic reactions of 1‐alkenes is high enough to be useful for asymmetric synthesis.  相似文献   

17.
18.
The formal insertion of alkenes into aromatic chloro- and bromoalkynes takes place under cationic gold catalysis. This haloalkynylation reaction can be performed with cyclic, gem-disubstituted and monosubstituted alkenes, using BINAP, triazolo[4,3-b]isoquinolin-3-ylidene ligands or SPhos, respectively. The products were isolated in moderate to excellent yields and with complete diastereo- and regioselectivity; the halogen atom bonding the more substituted carbon of the alkene. Preliminary experiments showed that the enantioselective haloalkynylation of cyclopentene can be performed with (S)-BINAP to afford the insertion products with moderate to good enantioselectivities.  相似文献   

19.
A palladium-catalyzed asymmetric [4+2] cycloaddition of 2-methylidenetrimethylene carbonate with alkenes derived from pyrazolones, indandione, or barbiturate has been successfully developed, affording pharmacologically interesting chiral tetrahydropyran-fused spirocyclic scaffolds. The target compounds were generated in good to excellent yields and with high enantioselectivity (up to 99 % ee). Furthermore, this cycloaddition reaction could be efficiently scaled up, and several synthetic transformations were accomplished for the construction of other useful chiral spiropyrazolone and spiroindandione derivatives.  相似文献   

20.
A new synthetic route to the privileged 1,2‐dihydroisoquinolines is reported. This method, which relies on a gold‐catalyzed formal [4+2] cycloaddition between ynamides and imines, provides a new retrosynthetic disconnection of the 1,2‐dihydroisoquinoline core by installing the 1,8a C?C and 2,3 C?N bonds in one step. Both aldimines and ketimines can be used as substrates. In addition, one example of dihydrofuropyridine synthesis is also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号