首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
A transition‐metal‐free transfer hydrogenation of 1,1‐disubstituted alkenes with cyclohexa‐1,4‐dienes as the formal source of dihydrogen is reported. The process is initiated by B(C6F5)3‐mediated hydride abstraction from the dihydrogen surrogate, forming a Brønsted acidic Wheland complex and [HB(C6F5)3]?. A sequence of proton and hydride transfers onto the alkene substrate then yields the alkane. Although several carbenium ion intermediates are involved, competing reaction channels, such as dihydrogen release and cationic dimerization of reactants, are largely suppressed by the use of a cyclohexa‐1,4‐diene with methyl groups at the C1 and C5 as well as at the C3 position, the site of hydride abstraction. The alkene concentration is another crucial factor. The various reaction pathways were computationally analyzed, leading to a mechanistic picture that is in full agreement with the experimental observations.  相似文献   

2.
The strong boron Lewis acid tris(pentafluorophenyl)borane, B(C6F5)3, is shown to abstract a hydride from suitably donor‐substituted cyclohexa‐1,4‐dienes, eventually releasing dihydrogen. This process is coupled with the FLP‐type (FLP=frustrated Lewis pair) hydrogenation of imines and nitrogen‐containing heteroarenes that are catalyzed by the same Lewis acid. The net reaction is a B(C6F5)3‐catalyzed, i.e., transition‐metal‐free, transfer hydrogenation using easy‐to‐access cyclohexa‐1,4‐dienes as reducing agents. Competing reaction pathways with or without the involvement of free dihydrogen are discussed.  相似文献   

3.
Reaction of [RuCl(CNN)(dppb)] ( 1‐Cl ) (HCNN=2‐aminomethyl‐6‐(4‐methylphenyl)pyridine; dppb=Ph2P(CH2)4PPh2) with NaOCH2CF3 leads to the amine‐alkoxide [Ru(CNN)(OCH2CF3)(dppb)] ( 1‐OCH2CF3 ), whose neutron diffraction study reveals a short RuO ??? HN bond length. Treatment of 1‐Cl with NaOEt and EtOH affords the alkoxide [Ru(CNN)(OEt)(dppb)] ? (EtOH)n ( 1‐OEt?n EtOH ), which equilibrates with the hydride [RuH(CNN)(dppb)] ( 1‐H ) and acetaldehyde. Compound 1‐OEt?n EtOH reacts reversibly with H2 leading to 1‐H and EtOH through dihydrogen splitting. NMR spectroscopic studies on 1‐OEt?n EtOH and 1‐H reveal hydrogen bond interactions and exchange processes. The chloride 1‐Cl catalyzes the hydrogenation (5 atm of H2) of ketones to alcohols (turnover frequency (TOF) up to 6.5×104 h?1, 40 °C). DFT calculations were performed on the reaction of [RuH(CNN′)(dmpb)] ( 2‐H ) (HCNN′=2‐aminomethyl‐6‐(phenyl)pyridine; dmpb=Me2P(CH2)4PMe2) with acetone and with one molecule of 2‐propanol, in alcohol, with the alkoxide complex being the most stable species. In the first step, the Ru‐hydride transfers one hydrogen atom to the carbon of the ketone, whereas the second hydrogen transfer from NH2 is mediated by the alcohol and leads to the key “amide” intermediate. Regeneration of the hydride complex may occur by reaction with 2‐propanol or with H2; both pathways have low barriers and are alcohol assisted.  相似文献   

4.
Outer-sphere radical hydrogenation of olefins proceeds via stepwise hydrogen atom transfer (HAT) from transition metal hydride species to the substrate. Typical catalysts exhibit M−H bonds that are either too weak to efficiently activate H2 or too strong to reduce unactivated olefins. This contribution evaluates an alternative approach, that starts from a square-planar cobalt(II) hydride complex. Photoactivation results in Co−H bond homolysis. The three-coordinate cobalt(I) photoproduct binds H2 to give a dihydrogen complex, which is a strong hydrogen atom donor, enabling the stepwise hydrogenation of both styrenes and unactivated aliphatic olefins with H2 via HAT.  相似文献   

5.
A series of Ru complexes containing lutidine‐derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver‐carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N‐heterocyclic carbene fragments. In the presence of tBuOK, the Ru‐CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand‐assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru‐CNC complex 5 e (BF4) is able to add aldimines to the metal–ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer‐sphere stepwise hydrogen transfer to the C?N bond assisted either by the pincer ligand or a second coordinated H2 molecule.  相似文献   

6.
The hydrogenation of ethyl acetate to ethanol catalyzed by SNS pincer ruthenium complexes was computationally investigated by using DFT. Different from a previously proposed mechanism with fac‐[(SNS)Ru(PPh3)(H)2] ( 5′ ) as the catalyst, an unexpected direct hydride transfer mechanism with a mer‐SNS ruthenium complex as the catalyst, and two cascade catalytic cycles for hydrogenations of ethyl acetate to aldehyde and aldehyde to ethanol, is proposed base on our calculations. The new mechanism features ethanol‐assisted proton transfer for H2 cleavage, direct hydride transfer from ruthenium to the carbonyl carbon, and C?OEt bond cleavage. Calculation results indicate that the rate‐determining step in the whole catalytic reaction is the transfer of a hydride from ruthenium to the carbonyl carbon of ethyl acetate, with a total free energy barrier of only 26.9 kcal mol?1, which is consistent with experimental observations and significantly lower than the relative free energy of an intermediate in a previously postulated mechanism with 5′ as the catalyst.  相似文献   

7.
尹传奇  张海宁 《分子催化》2002,16(4):247-252
在氢气压力下,钌配合物[^MeCnRuCl(dppe)](O3SCF3)与AgO3SC3在CH2Cl2中反应生成分子氢配合物[^MeCnRu(H2)(dppe)](O3SCF3)2,该分子氢配合物具有催化烯烃离子氢化的活性。原位高压核磁共振研究显示,这种催化离子氢化反应可能是由分子氢配合物向烯烃转移氢质子形成碳正离子引起的。  相似文献   

8.
In recent years, dihydrogen activation at non‐metallic centers has received increasing attention. A system in which dihydrogen is trapped by a pyridylidene intermediate that is generated from a pyridinium salt and a base is now reported. The dihydropyridine formed in this process can act as reducing agent towards organic electrophiles. By coupling the hydrogen‐activation step with subsequent hydride transfer from the dihydropyridine to an imine, a catalytic process was established. Treatment of the N‐phenylimine of phenyl trifluoromethyl ketone with 5–20 mol % of N‐mesityl‐3,5‐bis(2,6‐dimethylphenyl)pyridinium triflate and 0.3–1.0 equivalents of LiN(SiMe3)2 under 50 bar of hydrogen gas resulted in high conversion into the corresponding amine.  相似文献   

9.
A 16-electron dicationic dihydrogen complex [Ru(eta2-H...H)(PP)2][OTf]2 [4; PP = (C6H5CH2)2PCH2CH2P(CH2C6H5)2] has been prepared and characterized by protonating the precursor hydride complex [Ru(H)(PP)2)][OTf] (2) using HOTf. The hydride and dihydrogen complexes are stabilized via agostic interaction of the ortho C-H fragment of the phenyl ring on the benzyl group. The intact nature of the H-H bond in this derivative was established from the short spin-lattice relaxation time and the observation of a substantial J(H,D) of 22.0 Hz for the HD isotopomer. The H-H bond distance calculated from J(H,D) is 1.05 A, which falls under the category of elongated dihydrogen ligands.  相似文献   

10.
A theoretical study on two series of electron‐rich group 8 hydrides is carried out to evaluate involvement of the transition metal in dihydrogen bonding. To this end, the structural and electronic parameters are computed at the DFT/B3PW91 level for hydrogen‐bonded adducts of [(PP3)MH2] and [Cp*MH(dppe)] (M=Fe, Ru, Os; PP34‐P(CH2CH2PPh2)3, dppe= κ2‐Ph2PCH2CH2PPh2) with CF3CH2OH (TFE) as proton donor. The results are compared with those of adduct [Cp2NbH3] ? TFE featuring a “pure” dihydrogen bond, and classical hydrogen bonds in pyridine ? TFE and Me3N ? TFE. Deviation of the H ??? H? A fragment from linearity is shown to originate from the metal participation in dihydrogen bonding. The latter is confirmed by the electronic parameters obtained by NBO and AIM analysis. Considered together, orbital interaction energies and hydrogen bond ellipticity are salient indicators of this effect and allow the MH ??? HA interaction to be described as a bifurcate hydrogen bond. The impact of the M ??? HA interaction is shown to increase on descending the group, and this explains the experimental trends in mechanisms of proton‐transfer reactions via MH ??? HA intermediates. Strengthening of the M ??? H interaction in the case of electron‐rich 5d metal hydrides leads to direct proton transfer to the metal atom.  相似文献   

11.
The synthesis of a ruthenium carbene complex based on a sulfonyl‐substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal–carbon interaction can be tuned between a Ru?C single bond with additional electrostatic interactions and a Ru?C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non‐polar bonds (O?H, H?H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non‐innocent ligand supporting the bond activation as nucleophilic center in the 1,2‐addition across the metal–carbon double bond. This metal–ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis.  相似文献   

12.
The B(C6F5)3‐catalyzed hydrogenation is applied to aldoxime triisopropylsilyl ethers and hydrazones bearing an easily removable phthaloyl protective group. The C?N reduction of aldehyde‐derived substrates (oxime ethers and hydrazones) is enabled by using 1,4‐dioxane as the solvent known to participate as the Lewis‐basic component in FLP‐type heterolytic dihydrogen splitting. More basic ketone‐derived hydrazones act as Lewis bases themselves in the FLP‐type dihydrogen activation and are therefore successfully hydrogenated in nondonating toluene. The difference in reactivity between aldehyde‐ and ketone‐derived substrates is also reflected in the required catalyst loading and dihydrogen pressure.  相似文献   

13.
Aromatic ketones are enantioseletively hydrogenated in alcohols containing [RuX{(S,S)‐Tsdpen}(η6p‐cymene)] (Tsdpen=TsNCH(C6H5)CH(C6H5)NH2; X=TfO, Cl) as precatalysts. The corresponding Ru hydride (X=H) acts as a reducing species. The solution structures and complete spectral assignment of these complexes have been determined using 2D NMR (1H‐1H DQF‐COSY, 1H‐13C HMQC, 1H‐15N HSQC, and 1H‐19F HOESY). Depending on the nature of the solvents and conditions, the precatalysts exist as a covalently bound complex, tight ion pair of [Ru+(Tsdpen)(cymene)] and X?, solvent‐separated ion pair, or discrete free ions. Solvent effects on the NH2 chemical shifts of the Ru complexes and the hydrodynamic radius and volume of the Ru+ and TfO? ions elucidate the process of precatalyst activation for hydrogenation. Most notably, the Ru triflate possessing a high ionizability, substantiated by cyclic voltammetry, exists in alcoholic solvents largely as a solvent‐separated ion pair and/or free ions. Accordingly, its diffusion‐derived data in CD3OD reflect the independent motion of [Ru+(Tsdpen)(cymene)] and TfO?. In CDCl3, the complex largely retains the covalent structure showing similar diffusion data for the cation and anion. The Ru triflate and chloride show similar but distinct solution behavior in various solvents. Conductivity measurements and catalytic behavior demonstrate that both complexes ionize in CH3OH to generate a common [Ru+(Tsdpen)(cymene)] and X?, although the extent is significantly greater for X=TfO?. The activation of [RuX(Tsdpen)(cymene)] during catalytic hydrogenation in alcoholic solvent occurs by simple ionization to generate [Ru+(Tsdpen)(cymene)]. The catalytic activity is thus significantly influenced by the reaction conditions.  相似文献   

14.
Alkoxide‐bridged disilver cations react with dihydrogen to form hydride‐bridged cations, releasing free alcohol. Hydrogenolysis of neutral silver fluorides affords hydride‐bridged disilver cations as their bifluoride salts. These reactions proceed most efficiently when the supporting ligands are expanded N‐heterocyclic carbenes (NHCs) derived from 6‐ and 7‐membered cyclic amidinium salts. Kinetics studies show that silver fluoride hydrogenolysis is first‐order in both silver and dihydrogen.  相似文献   

15.
By performing MP2/aug‐cc‐pVTZ ab initio calculations for a large set of dimer systems possessing a R? H hydridic bond involved in diverse types of intermolecular interactions (dihydrogen bonds, hydride halogen bonds, hydride hydrogen bonds, and charge‐assisted hydride hydrogen bonds), we show that this is rather an elongation than a shortening that a hydride bond undergoes on interaction. Contrary to what might have been expected on the basis of studies in uniform electric field, this elongation is accompanied by a blue instead of red shift of the R? H stretching vibration frequency. We propose that the “additional” elongation of the R? H hydridic bond results from the significant charge outflow from the sigma bonding orbital of R? H that weakens this bond. The more standard red shift obtained for stronger complexes is explained by means of the Hermansson's formula and the particularly strong electric field produced by the H‐acceptor molecule. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
A C? H silylation of pyridines that seemingly proceeds through electrophilic aromatic substitution (SEAr) is reported. Reactions of 2‐ and 3‐substituted pyridines with hydrosilanes in the presence of a catalyst that splits the Si? H bond into a hydride and a silicon electrophile yield the corresponding 5‐silylated pyridines. This formal silylation of an aromatic C? H bond is the result of a three‐step sequence, consisting of a pyridine hydrosilylation, a dehydrogenative C? H silylation of the intermediate enamine, and a 1,4‐dihydropyridine retro‐hydrosilylation. The key intermediates were detected by 1H NMR spectroscopy and prepared through the individual steps. This complex interplay of electrophilic silylation, hydride transfer, and proton abstraction is promoted by a single catalyst.  相似文献   

17.
The preparation and isolation of the first palladium dihydrogen complex is described. NMR spectroscopy reveals a very short H? H bond length, but the hydrogen molecule is activated toward heterolytic cleavage. An X‐ray crystal structure suggests that proton transfer to the tBuPCP (κ3‐2,6‐(tBu2PCH2)2C6H3) pincer ligand is possible. The basicity of the ipso‐carbon atom of the pincer ligand was investigated in a related complex.  相似文献   

18.
In this paper, the mechanism of ketone hydrogenation catalyzed by five Ru bifunctional catalysts with different structural frameworks was studied in detail using density functional theory (DFT). This mechanism contains hydrogen transfer, dehydrogenation of alcohol, and dihydrogen activation fundamental reactions. The involvement of alcohol is also discussed and found with different activities in hydrogen transfer, dehydrogenation and dihydrogen activation steps in five systems. Our calculated results indicate that the weak Ru-H bond, stronger basicity of hydride and stronger X-H acidity will decrease the barrier of the HT step, and that the polar micro-environment of dihydrogen coordinating with Ru catalysts and short hydrogen transfer distance would be able to facilitate the heterolytic splitting of dihydrogen in the dihydrogen activation step.  相似文献   

19.
We present an atom‐economic strategy to catalytically generate and intercept nitrile anion equivalents using hydrogen transfer catalysis. Addition of α,β‐unsaturated nitriles to a pincer‐based Ru?H complex affords structurally characterized κ‐N‐coordinated keteniminates by selective 1,4‐hydride transfer. When generated in situ under catalytic hydrogenation conditions, electrophilic addition to the keteniminate was achieved using anhydrides to provide α‐cyanoacetates in high yields. This work represents a new application of hydrogen transfer catalysis using α,β‐unsaturated nitriles for reductive C?C coupling reactions.  相似文献   

20.
The C--H…H dihydrogen-bonded complexes of methane, ethylene, acetylene, and their derivatives with magnesium hydride were systematically investigated at MP2/aug-cc-PVTZ level. The results confirm that the strength of dihydrogen bonding increases in the following order of proton donors: C(sp3)-H〈C(sp2)-H〈C(sp)-H and chlorine substituents enhance the C-H…H interaction. In the majority of the complexes with a cyclic structure, the Mg-H proton-accepting bond is more sensitive to the surroundings than C-H proton-donating bond. The nature of the electrostatic interaction in these C-H…H dihydrogen bonds was also unveiled by means of the atoms in mo- lecules(AIM) analysis. The natural bond orbital(NBO) analysis suggests that the charge transfer in the cyclic com- plexes is characteristic of dual-channel. The direction of the net charge transfer in the cyclic complexes is contrary to that previously found in dihydrogen bonded systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号