首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclocondensation of ethyl (imidazolidine‐2‐ylidene)acetate with aromatic esters bearing labile halogen in ortho‐position leads to fused heterocycles, which is formed by substitution of halogen atom with α‐carbon atom of cyclic ketene aminal and binding of nitrogen atom with carbonyl carbon atom of aromatic ester.  相似文献   

2.
Results are summarized of investigations carried out by the authors on the synthesis and study of the reactivity of organosilicon derivatives of nitrogen-containing heterocycles YCH2SiX3, where X = OMe, F, 1/3 (OCH2CH2)3N; Y = a heterocyclic substituent linked by a CH2 group with an endocyclic nitrogen atom or an exocyclic sulfur atom.  相似文献   

3.
Ab initio calculations indicate that metalation of the exocyclic amino group of cytosine by the elements of Group IA (Li, Na, K, Rb and Cs) induces protonation of a nucleobase ring nitrogen atom, and hence causes a proton shift from an exocyclic to an endocyclic nitrogen atom. Thus, this metal‐assisted process leads to the generation of rare nucleobase tautomers. The calculations suggest that this kind of metalation increases the protonation energies of the aromatic ring of the nucleobase. The present study reports the quantum chemistry analysis of the metal‐assisted tautomerization. The calculations clearly demonstrate that metalation of the exocyclic amino group of the nucleobase significantly increases the protonation energy of the aromatic rings of the nucleobase. Also, absolute anisotropy shift, molecular orbital and natural bond orbital calculations are compatible with these results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
We have recorded the 13C n.m.r. spectra of thiones and thioethers in the 1,3-diazole and 1,3-diazine series with various alkyl substituents at the nitrogen atoms. Some analogous oxygen containing heterocycles were also examined. We have shown that in the thiocarbonylated compounds the thiol ? thione equilibrium is displaced towards the thione form, but that 13C n.m.r. gives only qualitative results. In the sulphur containing derivatives the isopropyl group is in a fixed conformational position because of the steric hindrance of the sulphur atom. Substitution by a tert-butyl group leads to unexpected γ values. We ascribe this phenomenon to ring deformation or to variations in the valence angles of the substituted nitrogen atoms.  相似文献   

5.
2H‐azirines can serve as three‐atom synthons by C?C bond cleavage, however, it involves a high energy barrier under thermal conditions (>50.0 kcal mol?1). Reported is a ruthenium‐catalyzed [3+2+2] cycloaddition reaction of 2H‐azirines with diynes, thus leading to the formation of fused azepine skeletons. This approach features an unprecedented metal‐catalyzed C?C bond cleavage of 2H‐azirines at room temperature, and the challenging construction of aza‐seven‐membered rings from diynes. The results of this study provide a new reaction pattern for constructing nitrogen‐containing seven‐membered rings and may find applications in the synthesis of other complex heterocycles.  相似文献   

6.
The reaction of o-phthalyl chloride with sodium diethylphosphite affords a cyclic bisphosphonate, 3,3-bis(diethylphosphono)-1(3H)-isobenzofuranone. The reaction of 1(3H)-isobenzofuranone with potassium carbonate proceeds through the ring opening and elimination of one phosphonate group to give acyclic α-ketophosphonate. At the same time, the reaction of bisphosphonate with the concentrated hydrochloric acid does not lead to the ring opening but gives bisphosphonic acid in a good yield. 3,3-Bis(diethylphosphono)-1(3H)-isobenzofuranone reacts with benzylamine in the presence of triethylamine with the replacement of endocyclic oxygen atom by benzylamino group, which leads to the formation of the corresponding bisphosphonate phthalimide, the first representative of a new type of bisphosphonates and phosphorus heterocycles.  相似文献   

7.
A general and efficient method for the synthesis of cyclic sulfinates and sulfinamides based on intramolecular homolytic substitution (SHi) at the sulfur atom by aryl or alkyl radicals is described. Both alkyl and benzofused compounds can be accessed directly from easily prepared acyclic precursors. Enantiomerically enriched sulfur‐based heterocycles were formed through an SHi process with inversion of configuration at the sulfur atom. Cyclization of prochiral radicals proceeded with varying stereochemical outcomes, depending on the size of the incoming radical. 2‐Pyridyl and 2‐quinolyl radicals led to biaryl compounds, which result from attack onto the ortho position of the arylsulfinate rather than a thiophilic substitution.  相似文献   

8.
The ubiquity of nitrogen heterocycles in biologically active molecules challenges synthetic chemists to develop a variety of tools for their construction. While developing metal‐free hydroamination reactions of hydrazine derivatives, it was discovered that carbazates and semicarbazides can also lead to alkene aminocarbonylation products if nitrogen‐substituted isocyanates (N‐isocyanates) are formed in situ as reactive intermediates. At first this reaction required high temperatures (150–200 °C), and issues included competing hydroamination and N‐isocyanate dimerization pathways. Herein, improved conditions for concerted intramolecular alkene aminocarbonylation with N‐isocyanates are reported. The use of βN‐benzyl carbazate precursors allows the effective minimization of N‐isocyanate dimerization. Diminished dimerization leads to higher yields of alkene aminocarbonylation products, to reactivity at lower temperatures, and to an improved scope for a reaction sequence involving alkene aminocarbonylation followed by 1,2‐migration of the benzyl group. Furthermore, fine‐tuning of the blocking (masking) group on the N‐isocyanate precursor, and reaction conditions relying on base catalysis for N‐isocyanate formation from simpler precursors resulted in room temperature reactivity, consequently minimizing the competing hydroamination pathway. Collectively, this work highlights that controlled reactivity of aminoisocyanates is possible, and provides a broadly applicable alkene aminocarbonylation approach to heterocycles possessing the β‐aminocarbonyl motif.  相似文献   

9.
A new series of boron–dipyrromethene (BDP, BODIPY) dyes with dihydronaphthalene units fused to the β‐pyrrole positions ( 1 a – d , 2 ) has been synthesised and spectroscopically investigated. All the dyes, except pH‐responsive 1 d in polar solvents, display intense emission between 550–700 nm. Compounds 1 a and 1 b with a hydrogen atom and a methyl group in the meso position of the BODIPY core show spectroscopic properties that are similar to those of rhodamine 101, thus rendering them potent alternatives to the positively charged rhodamine dyes as stains and labels for less polar environments or for the dyeing of latex beads. Compound 1 d , which carries an electron‐donating 4‐(dimethylamino)phenyl group in the meso position, shows dual fluorescence in solvents more polar than dibutyl ether and can act as a pH‐responsive “light‐up” probe for acidic pH. Correlation of the pKa data of 1 d and several other meso‐(4‐dimethylanilino)‐substituted BODIPY derivatives allowed us to draw conclusions on the influence of steric crowding at the meso position on the acidity of the aniline nitrogen atom. Preparation and investigation of 2 , which carries a nitrogen instead of a carbon as the meso‐bridgehead atom, suggests that the rules of colour tuning of BODIPYs as established so far have to be reassessed; for all the reported couples of meso‐C‐ and meso‐N‐substituted BODIPYs, the exchange leads to pronounced redshifts of the spectra and reduced fluorescence quantum yields. For 2 , when compared with 1 a , the opposite is found: negligible spectral shifts and enhanced fluorescence. Additional X‐ray crystallographic analysis of 1 a and quantum chemical modelling of the title and related compounds employing density functional theory granted further insight into the features of such sterically crowded chromophores.  相似文献   

10.
The bis‐phosphonio‐1, 2, 4‐diazaphospholide salt ( 1 [Cl]) reacts with complex boron hydrides under selective extrusion of one PPh3 moiety to give borane adducts of a novel zwitterionic phosphonio‐1, 2, 4‐diazaphospholide. Both the Et3B adduct 2b and the free zwitterionic heterocycle 3 , which was liberated by further reaction of 2b with NEt3, were characterized by spectroscopic data and 2b , as well, by a single crystal X‐ray diffraction study. The comparison of the structural data with those of a neutral 1, 2, 4‐diazaphosphole and a lithium‐1, 2, 4‐diazaphospholide which was formed by deprotonation of the parent 1, 2, 4‐diazaphosphole 4a discloses trends in endocyclic bonding distances which can be rationalized in terms of a charge dependent shift in the π‐electron distribution. First studies of the co‐ordination properties reveal for both 2b and 4a a marked preference to bind two M(CO)5‐fragments (M = Cr, W) via the lone‐pairs of the phosphorus and one nitrogen atom; mononuclear complexes with P‐co‐ordinated heterocycles are formed as intermediates. A single crystal X‐ray diffraction study of the dinuclear complex [Cr2(CO)102‐C2H3N2P‐κP, κN)] ( 10a ) together with spectroscopic studies (including 183W NMR studies of tungsten complexes) suggests that M→L back donation is more efficient for P‐ than for N‐bound metal fragments. No evidence for π‐co‐ordination of the 1, 2, 4‐diazaphosphole ring to a Cr(CO)3 fragment was obtained.  相似文献   

11.
A mild and efficient gold‐catalyzed oxidative ring‐expansion of a series of alkynyl heterocycles using pyridine‐N‐oxide as the oxidant has been developed, which affords highly valuable six‐ or seven‐membered heterocycles with wide functional group toleration. The reaction consists of a regioselective oxidation and a chemoselective migration of an endocyclic carbon–heteroatom bond (favored over C?H migration) with the order of migratory aptitude for carbon–heteroatom bonds being C?S>C?N>C?O. In the absence of an oxidant, polycyclic products are readily constructed through a ring‐expansion/Nazarov cyclization reaction sequence.  相似文献   

12.
Five‐membered metallacycles are typically reluctant to undergo endocyclic β‐hydrogen elimination. The rhodium‐catalyzed isomerization of 4‐pentenals into 3‐pentenals occurs through this elementary step and cleavage of two C H bonds, as supported by deuterium‐labeling studies. The reaction proceeds without decarbonylation, leads to trans olefins exclusively, and tolerates other olefins normally prone to isomerization. Endocyclic β‐hydrogen elimination can also be controlled in an enantiodivergent reaction on a racemic mixture.  相似文献   

13.
Single‐atom catalysts (SACs) have been explored widely as potential substitutes for homogeneous catalysts. Isolated cobalt single‐atom sites were stabilized on an ordered porous nitrogen‐doped carbon matrix (ISAS‐Co/OPNC). ISAS‐Co/OPNC is a highly efficient catalyst for acceptorless dehydrogenation of N‐heterocycles to release H2. ISAS‐Co/OPNC also exhibits excellent catalytic activity for the reverse transfer hydrogenation (or hydrogenation) of N‐heterocycles to store H2, using formic acid or external hydrogen as a hydrogen source. The catalytic performance of ISAS‐Co/OPNC in both reactions surpasses previously reported homogeneous and heterogeneous precious‐metal catalysts. The reaction mechanisms are systematically investigated using first‐principles calculations and it is suggested that the Eley–Rideal mechanism is dominant.  相似文献   

14.
The crystal structures of 1,2,3,4,6‐penta‐O‐acetyl‐α‐d ‐mannopyranose, C16H22O11, and 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranosyl‐(1→2)‐3,4,6‐tri‐O‐acetyl‐α‐d ‐mannopyranosyl‐(1→3)‐1,2,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranose, C40H54O27, were determined and compared to those of methyl 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranoside, methyl α‐d ‐mannopyranoside and methyl α‐d ‐mannopyranosyl‐(1→2)‐α‐d ‐mannopyranoside to evaluate the effects of O‐acetylation on bond lengths, bond angles and torsion angles. In general, O‐acetylation exerts little effect on the exo‐ and endocyclic C—C and endocyclic C—O bond lengths, but the exocyclic C—O bonds involved in O‐acetylation are lengthened by ~0.02 Å. The conformation of the O‐acetyl side‐chains is highly conserved, with the carbonyl O atom either eclipsing the H atom attached to a 2°‐alcoholic C atom or bisecting the H—C—H bond angle of a 1°‐alcoholic C atom. Of the two C—O bonds that determine O‐acetyl side‐chain conformation, that involving the alcoholic C atom exhibits greater rotational variability than that involving the carbonyl C atom. These findings are in good agreement with recent solution NMR studies of O‐acetyl side‐chain conformations in saccharides. Experimental evidence was also obtained to confirm density functional theory (DFT) predictions of C—O and O—H bond‐length behavior in a C—O—H fragment involved in hydrogen bonding.  相似文献   

15.
Five‐membered metallacycles are typically reluctant to undergo endocyclic β‐hydrogen elimination. The rhodium‐catalyzed isomerization of 4‐pentenals into 3‐pentenals occurs through this elementary step and cleavage of two C? H bonds, as supported by deuterium‐labeling studies. The reaction proceeds without decarbonylation, leads to trans olefins exclusively, and tolerates other olefins normally prone to isomerization. Endocyclic β‐hydrogen elimination can also be controlled in an enantiodivergent reaction on a racemic mixture.  相似文献   

16.
Janus bases are heterocyclic nucleic acid base analogs that present two different faces able to simultaneously hydrogen bond to nucleosides that form Watson–Crick base pairs. The synthesis of a Janus‐AT nucleotide analogue, N JAT , that has an additional endocyclic ring nitrogen and is thus more capable of efficiently discriminating T/A over G/C bases when base‐pairing in a standard duplex‐DNA context is described. Conversion to a phosphoramidite ultimately afforded incorporation into an oligonucleotide. In contrast to the first generation of carbocyclic Janus heterocycles, it remains in its unprotonated state at physiological pH and, therefore, forms very stable Watson–Crick base pairs with either A or T bases. Biophysical and computational methods indicate that N JAT is an improved candidate for sequence‐specific genome targeting.  相似文献   

17.
The centrosymmetric title compound, [Ag(C7H4NO2S2)]n, consists of dinuclear units in which two thiosaccharinate anions each bridge two Ag atoms via an endocyclic N atom and an exocyclic S atom across a crystallographic centre of inversion midway between the Ag atoms. The dimeric units are connected via Ag—Sexo interactions to create two‐dimensional networks. The thiosaccharinate anions bridge in a μ3S:S:N manner. The Ag...Ag distance can be considered a strong argentophilic interaction.  相似文献   

18.
The reaction of 1-(2,2-dimethoxyethyl)-1,3,3-trimethylurea with 2-methylresorcinol in dioxane in the presence of trifluoromethanesulfonic acid affords a new type of imidazolidin-2-ones, viz., 5-(2,4-dihydroxy-3-methylphenyl)-1,1,3-trimethyl-2-oxoimidazolidinium triflate containing an endocyclic ammonium nitrogen atom.  相似文献   

19.
Photolysis of the cyclic phosphine oligomer [PPh]5 in the presence of pentaarylboroles leads to the formation of 1,2‐phosphaborines by the formal insertion of a phenylphosphinidene fragment into the endocyclic C? B bond. The solid‐state structure features a virtually planar central ring with bond lengths indicating significant delocalization. Appreciable ring current in the 1,2‐phosphaborine core, detected in nuclear independent chemical shift (NICS) calculations, are consistent with aromatic character. These products are the first reported 1,2‐BPC4 conjugated heterocycles and open a new avenue for B? P as a valence isoelectronic substitute for C? C in arene systems.  相似文献   

20.
N‐acyliminium ions are reactive intermediates that can act as electron‐deficient electrophiles toward weak or soft nucleophiles, thereby providing useful methods for both intermolecular‐ and intramolecular carbon–carbon and carbon–heteroatom bond formation. Nucleophilic additions to N‐acyliminium ions constitute an important method for providing α‐functionalized amino compounds and many other biologically active nitrogen‐containing heterocycles. The development of efficient catalytic asymmetric reactions is a key objective in modern organic chemistry and is very important for the synthesis of natural products, pharmaceuticals, and agrochemicals. Various methods are available for this purpose and mostly rely on the use of chiral catalysts for enantioselective synthesis. This review deals with one aspect of such catalysis, which has emerged only in the past few years, and its applications in enantioselective reactions of N‐acyliminium ions to provide various nitrogen‐containing heterocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号