首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of the near‐IR band in the electronic absorption spectra of bis(tetrapyrrole) rare earth(III) complexes Y(Pc)2 (1), La(Pc)2 (2), Y(Pc)(Por) (3), Y(Pc)[Pc(α‐OCH3)4] (4), Y(Pc)[Pc(α‐OCH3)8] (5), and Y(Pc)[Pc(β‐OCH3)8] (6) was studied on the basis of time‐dependent density functional theory (TD‐DFT) calculations. The electronic dipole moment along the z‐axis in the electronic transition of the near‐IR band in all the studied neutral bis(tetrapyrrole) yttrium(III) and lanthanum(III) double‐deckers is well explained on the basis of the composition analysis of the orbitals involved. The electronic transition in the near‐IR band causes the reversion of the orbital orientation of one tetrapyrrole ring in both homoleptic and heteroleptic bis(tetrapyrrole) rare earth complexes and induces electron transfer from the tetrapyrrole ring with lower orbital energy to the other ring in the heteroleptic bis(tetrapyrrole) rare earth(III) complexes. The near‐IR band can work as an ideal characteristic absorption band to reflect the π–π interaction between the two tetrapyrrole rings in bis(tetrapyrrole) rare earth(III) double‐decker complexes because of its peculiar electronic transition nature. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

2.
A series of homoleptic ([TbIII(Pc)2]) and heteroleptic ([TbIII(Pc)(Pc′)]) TbIII bis(phthalocyaninate) complexes that contain different peripheral substitution patterns (i.e., tert‐butyl or tert‐butylphenoxy groups) have been synthesized in their neutral radical forms and then reduced into their corresponding anionic forms as stable tetramethylammonium/tetrabutylammonium salts. All of these compounds were spectroscopically characterized and their magnetic susceptibility properties were investigated. As a general trend, the radical forms exhibited larger energy barriers for spin reversal than their corresponding reduced compounds. Remarkably, heteroleptic complexes that contain electron‐donor moieties on one of the two Pc ligands show higher effective barriers and blocking temperatures than their homoleptic derivatives. This result is assigned to the elongation of the N? Tb distances in the substituted macrocycle, which brings the terbium(III) ion closer to the unsubstituted Pc, thus enhancing the ligand‐field effect. In particular, heteroleptic [TbIII(Pc)(Pc′)] complex 4 , which contains one octa(tert‐butylphenoxy)‐substituted Pc ring and one bare Pc ring, exhibits the highest effective barrier and blocking temperature for a single‐molecule magnet reported to date.  相似文献   

3.
Tetrameric porphyrin formation of 2‐hydroxymethylpyrrole fused with porphyrins through a bicyclo[2.2.2]octadiene unit gave bicyclo[2.2.2]octadiene‐fused porphyrin pentamers. Thermal conversion of the pentamers gave fully π‐conjugated cruciform porphyrin pentamers fused with benzene units in quantitative yields. UV/Vis spectra of fully π‐conjugated porphyrin pentamers showed one very strong Q absorption and were quite different from those of usual porphyrins. From TD‐DFT calculations, the HOMO level is 0.49 eV higher than the HOMO?1 level. The LUMO and LUMO+1 levels are very close and are lower by more than 0.27 eV than those of other unoccupied MOs. The strong Q absorption was interpreted as two mutually orthogonal single‐electron transitions (683 nm: 86 %, HOMO→LUMO; 680 nm: 86 %, HOMO→LUMO+1). The two‐photon absorption (TPA) cross section value (σ(2)) of the benzene‐fused porphyrin pentamer was estimated to be 3900 GM at 1500 nm, which is strongly correlated with a cruciform molecular structure with multidirectional π‐conjugation pathways.  相似文献   

4.
The vibrational (IR and Raman) spectra of neutral and reduced mixed (phthalocyaninato)(porphyrinato) yttrium(III) double-decker complexes Y(Pc)(Por) and [Y(Pc)(Por)] [the simplified models of mixed (phthalocyaninato)(porphyrinato) rare earth(III) complexes] are studied using density functional theory (DFT) calculations. The simulated IR and Raman spectra of Y(Pc)(Por) are compared with the experimental IR spectrum of Tb(Pc)(TClPP) and Raman spectrum of Y(Pc)(TClPP), respectively, and many bands can acceptably fit in spite of the different species. On the basis of comparison with the simulated spectra of PbPc and PbPor together with the assistance of normal coordinate analysis, the calculated frequencies in their IR and Raman spectra are identified in terms of the vibrational mode of different ligand for the first time. The calculated frequency at 1048 cm−1 in the IR spectrum of [Y(Pc)(Por)] with contribution from both Pc and Por vibrational modes is the characteristic IR vibrational mode of the reduced double-decker, while the characteristic IR vibrational mode of Y(Pc)(Por) attributed from the vibration of phthalocyanine monoanion radical Pc appears at 1257 cm−1. In line with our previous experimental findings that the Raman spectra of M(Pc)(TPP) and M(Pc)(TClPP) are dominated by the Pc vibrational modes, theoretical calculations indicate that most of the Raman vibrational modes contributed from Por ring are covered up by those of Pc ring and thus are hard to be recognized in the Raman spectra of [Y(Pc)(Por)] and Y(Pc)(Por) due to their much weaker intensity in comparison with that of Pc ligand. Comparison in the IR and Raman spectra between [Y(Pc)(Por)] and Y(Pc)(Por) also suggests the localization of hole on the Pc ring in the neutral double-decker Y(Pc)(Por). The present work, representing the first detailed DFT study on the vibrational spectra of mixed (phthalocyaninato)(porphyrinato) rare earth(III) double-decker complexes, is useful in helping to understand the vibrational spectroscopic properties of this series of mixed tetrapyrrole ring complexes.  相似文献   

5.
The UV–Vis spectra for 1:2 complexation of four different para‐substituted meso‐tetraphenylporphyrin (H2t(4‐X)pp) and meso‐tetraphenylporphyrins (H2tpp) with trimethylsilyl chloride (TMSC) displayed large and different redshifts (28–32.4 nm) of Soret and (15–41.7 nm) Q(0‐0) bands, whereas 1:2 complexation of the less flexible tetramesitylporphyrin (H2tmp) with TMSC led to rather small redshift (24.8 nm) of the Soret band and blueshift (−7.4 nm) of the Q(0‐0) band. The varying spectral behavior for the porphyrins complexation seems to essentially reflect the different extent of π‐interactions between the meso‐aryl groups and the presumably saddled porphyrin macrocycle, through their relative coplanarity. The observed order of the rate constants for the complexation of various para‐substituted porphyrins, H2t(4‐OCH3)pp (9.27 ± 0.03) × 10−3 > H2t(4‐CH3)pp (6.68 ± 0.05) × 10−3 > H2tpp (3.2 ± 0.05) × 10−3 > H2t(4‐Cl)pp (8.36 ± 0.06) × 10−4, clearly demonstrated a higher reaction rate for the porphyrins containing para‐substituents with stronger electron donor ability. The calculated order for porphyrins (0.9 ± 0.1) and for TMSC (1.0 ± 0.1) suggests rate = K[Por][TMSC] for the complexation. Attempts were made to explain the absence of spectral evidence for the presence of an intermediate 1:1 (TMSC) Por adduct in terms of its high reactivity and/or relative instability. © 2007 Wiley Periodicals, Inc. 39: 231–235, 2007  相似文献   

6.
Fusion of two N‐annulated perylene (NP) units with a fused porphyrin dimer along the S0–S1 electronic transition moment axis has resulted in new near‐infrared (NIR) dyes 1 a / 1 b with very intense absorption (ε>1.3×105 M ?1 cm?1) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10?6 and 6.0×10?6 for 1 a and 1 b , respectively. The NP‐substituted porphyrin dimers 2 a / 2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited‐state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer‐like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two‐photon absorption cross‐sections in the NIR region due to extended π‐conjugation. Time‐dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.  相似文献   

7.
A triangulene‐based C2‐symmetric 33 π‐conjugated stable neutral π‐radical, 2. , which possesses two dicyanomethylene groups and one oxo group, has been designed, synthesized, and isolated as an analogue of tris(dicyanomethylene) derivative 1. and trioxo derivative TOT. with C3 symmetry. Effects of molecular‐symmetry reduction and electron‐accepting substituents on this fused polycyclic neutral π‐radical system were studied in terms of their molecular structure, electronic‐spin structure, and electrochemical and optical properties with the help of theoretical calculations. Interestingly, this system ( 2. ) has a four‐stage redox ability, like TOT. , as well as low frontier energy levels and a small SOMO–LUMO gap, similar to 1. , in spite of the loss of the degenerate LUMOs in symmetry‐lowered 2. , which is associated with the attachment of the weaker electron‐accepting oxo group instead of the dicyanomethylene group in 1. . These prominent results are attributable to the structural and electronic properties in the triangulene‐based highly delocalized fused polycyclic neutral π‐radical system.  相似文献   

8.
A fused π‐helical N‐heterocyclic carbene (NHC) system was prepared and examined through its diastereoisomerically pure cycloiridiated complexes. The latter display light‐green phosphorescence with unusually long lifetimes and circular polarization that depends on both the helical NHC P /M stereochemistry and the iridium Δ/Λ stereochemistry. These unprecedented features are attributed to extended π conjugation within the helical carbenic ligand and efficient helicene‐NHC–Ir interaction.  相似文献   

9.
The crystal structure of the title compound, C17H10O3, is the first example of a furocoumarin containing three fused rings. The tricyclic furocoumarin fragment is perfectly planar. The phenyl substituent forms a dihedral angle of 39.52 (8)° with the plane of the tricyclic system. The crystal packing involves centrosymmetric dimers interconnected by strong π‐interactions between their furo­[3,2‐c]­coumarin fragments [at distances of 3.42 (4) Å].  相似文献   

10.
The crystal structures and redox properties of p‐benzoquinone (BQ)‐fused [18]crown‐6 1 and bis‐BQ‐fused [18]crown‐6 2 were examined. The anion radicals of these BQ molecules were stabilized by addition of metal ions, through effective electrostatic interactions between the negatively charged BQ moiety and positively charged ion‐capturing [18]crown‐6 unit. The electrostatic interactions and solvation energy played important roles in determining the magnitudes of anodic redox shifts in the reduction potentials. Regular π‐stacking of BQ units and regular arrays of [18]crown‐6 units were observed in crystal 2 , in which one‐dimensional π‐electron columns were separated by ionic channels. The hydroquinone‐fused [18]crown‐6 molecule 3 and a new BQ‐ and phenol‐fused [18]crown‐6 derivative 4 were obtained as single crystals. The molecular conformations of [18]crown‐6 in crystal 3 and hydrated crystal 3 ?H2O were different from each other.  相似文献   

11.
To design efficient dyes for dye‐sensitized solar cells (DSSCs), using a Zn‐coordinated phthalocyanine (TT7) as the prototype, a series of phthalocyanine dyes (Pcs) with different metal ions and peripheral/axial groups have been investigated by means of density functional theory (DFT) and time‐dependent DFT (TDDFT) methods. Computational results show that the iodinated Al‐based dye with a peripheral amino group (Al‐I‐NH2‐Pc) exhibits the largest redshift in the maximum absorbance (λmax). In addition, Al‐based dyes have appropriate energy‐level arrangements of frontier orbitals to keep excellent balance between electron injection and regeneration of oxidized dyes. Further, it has been found that the intermolecular π‐staking interaction in Al‐I‐Pc molecules is weaker than the other metal‐based Pcs, which may effectively reduce dye aggregation on the semi‐conductor surface. All these results suggest iodinated Al‐based Pcs (Al‐I‐Pcs) to be potentially promising sensitizers in DSSCs.  相似文献   

12.
Pyrene‐bridged boron subphthalocyanine dimers were synthesized from a mixed‐condensation reaction of 2,7‐di‐tert‐butyl‐4,5,9,10‐tetracyanopyrene and tetrafluorophthalonitrile, and their syn and anti isomers arising from the result of connecting two bowl‐shaped boron subphthalocyanine molecules were successfully separated. Expansion of the conjugated system of boron subphthalocyanine through a pyrene bridge caused a redshift of the Q band absorption relative to the parent pyrene‐fused monomer, whereas combining the curved π‐conjugation of boron subphthalocyanine with the planar π‐conjugation of pyrene enabled facile embracement of C60 molecules, owing to the enhanced concave–convex π–π stacking interactions.  相似文献   

13.
Novel pyrene‐fused unsymmetrical phthalocyanine derivatives 2,3,9,10,16,17‐hexakis(2,6‐dimethylphenoxy)‐22,25‐diaza(2,7‐di‐tert‐butylpyrene)[4,5]phthalocyaninato zinc complex Zn[Pc(Pz‐pyrene)(OC8H9)6] ( 1 ) and 2,3,9,10‐tra(2,6‐dimethylphenoxy)‐15,18,22,25‐traza(2,7‐di‐tert‐butylpyrene)[4,5]phthalocyaninato zinc compound Zn[Pc(Pz‐pyrene)2(OC8H9)4] ( 2 ) were isolated for the first time. These unsymmetrical pyrene‐fused phthalocyanine derivatives have been characterized by a wide range of spectroscopic and electrochemical methods. In particular, the pyrene‐fused phthalocyanine structure was unambiguously revealed on the basis of single crystal X‐ray diffraction analysis of 1 , representing the first structurally characterized phthalocyanine derivative fused with an aromatic moiety larger than benzene.  相似文献   

14.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   

15.
meso‐Monobenzoporphycene (mMBPc) and meso‐dibenzoporphycene (mDBPc), in which one or two benzene moieties are fused at ethylene‐bridged positions (meso‐positions) of porphycene, were prepared in an effort to further delocalize the π‐electrons within the porphycene molecule. mMBPc and mDBPc were fully characterized by mass spectrometry, 1H and 13C NMR spectroscopy, and X‐ray crystallography. The longest‐wavelength Q‐bands of mMBPc and mDBPc are red‐shifted by 92 nm and 418 nm, respectively, compared to that of the unsubstituted porphycene (Pc). Electrochemical measurements indicate that the HOMO is destabilized and the LUMO is stabilized by the fused benzene moieties at the meso positions. Furthermore, both XPS and theoretical studies support the presence of a cis tautomeric form in the ground state of mDBPc, despite the fact that essentially all known porphycene derivatives adopt the trans tautomeric form.  相似文献   

16.
A divergent method for the synthesis of α,α′‐diarylacenaphtho[1,2‐c]phosphole P‐oxides has been established; α,α′‐dibromoacenaphtho[c]phosphole P‐oxide, which was prepared through a TiII‐mediated cyclization of 1,8‐bis(trimethylsilylethynyl)naphthalene, underwent a Stille coupling with three different kinds of aryltributylstannanes to afford the α,α′‐diarylacenaphtho[c]phosphole P‐oxides in moderate to good yields. X‐ray crystallographic analyses and UV/Vis absorption/fluorescence measurements have revealed that the degree of π‐conjugation, the packing motif, the electron‐accepting ability, and the thermal stability of the acenaphtho[c]phosphole π‐systems are finely tunable with the α‐aryl substituents. All the P?O and P?S derivatives exhibited high stability in their electrochemically reduced state. To use this class of arene‐fused phosphole π‐systems as n‐type semiconducting materials, we evaluated device performances of the bulk heterojunction organic photovoltaics (OPV) that consist of poly(3‐hexylthiophene), an indene‐C70 bisadduct, and a cathode buffer layer. The insertion of the diarylacenaphtho[c]phosphole P‐oxides as the buffer layer was found to improve the power conversion efficiency of the polymer‐based OPV devices.  相似文献   

17.
Compared with benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (BTT), an extended π‐conjugation fused ring derivative, dithieno[2,3‐d:2′,3′‐d′]benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (DTBTT) has been designed and synthesized successfully. For investigating the effect of extending conjugation, two wide‐bandgap (WBG) benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based conjugated polymers (CPs), PBDT‐DTBTT, and PBDT‐BTT, which were coupled between alkylthienyl‐substituted benzo[1,2‐b:4,5‐b′]dithiophene bistin (BDT‐TSn) and the weaker electron‐deficient dibromides DTBTTBr2 and BTTBr2 bearing alkylacyl group, were prepared. The comparison result revealed that the extending of conjugated length and enlarging of conjugated planarity in DTBTT unit endowed the polymer with a wider and stronger absorption, more ordered molecular structure, more planar and larger molecular configuration, and thus higher hole mobility in spite of raised highest occupied molecular orbital (HOMO) energy level. The best photovoltaic devices exhibited that PBDT‐DTBTT/PC71BM showed the power conversion efficiency (PCE) of 2.73% with an open‐circuit voltage (VOC) of 0.82 V, short‐circuit current density (JSC) of 6.29 mA cm?2, and fill factor (FF) of 52.45%, whereas control PBDT‐BTT/PC71BM exhibited a PCE of 1.98% under the same experimental conditions. The 38% enhanced PCE was mainly benefited from improved absorption, and enhanced hole mobility after the conjugated system was extended from BTT to DTBTT. Therefore, our results demonstrated that extending the π‐conjugated system of donor polymer backbone was an effective strategy of tuning optical electronic property and promoting the photovoltaic property in design of WBG donor materials.  相似文献   

18.
Diindeno‐fused bischrysene, a new diindeno‐based polycyclic hydrocarbon (PH), was synthesized and characterized. It was elucidated in detailed experimental and theoretical studies that this cyclopenta‐fused PH possesses an open‐shell singlet biradical structure in the ground state and exhibits high stability under ambient conditions (t 1/2=39 days). The crystal structure unambiguously shows a novel saddle‐shaped π‐conjugated carbon skeleton due to the steric hindrance of the central cove‐edged bischrysene unit. UV/Vis spectral measurements revealed that the title molecule has a very narrow optical energy gap of 0.92 eV, which is consistent with the electrochemical analysis and further supported by density functional theory (DFT) calculations.  相似文献   

19.
The title novel fused tricyclic phosphoroheterocycle, C19H20N3O2PS, was synthesized in an excellent yield of 88.5% via the reac‐ tion of 1‐(2‐bromoethyl)‐2,3‐dihydro‐3‐propyl‐1,3,2‐benzodiazaphosphorin‐4(1H)‐one 2‐oxide with phenyl isothiocyanate, which contains the proximate imino and phosphoryl groups in the fused heterocycle. The crystallographic data analysis reveals that the title compound crystallizes into triclinic space group P with unit cell parameters: a = 9.159(3) Å, b = 10.463(4) Å, c = 10.698(4) Å, α = 88.090(6)°, β = 86.921(6)°, γ = 70.528(6)°, V = 965.0(6) Å3 for Z = 2 and there is a fused three‐ring in the molecule. The structure has been solved by direct methods and refined to R = 0.0424 for 2451 observed reflections with I >2 σ(I). The proximate imino and phosphoryl groups are not coplanar because both are jointly located in the fused heterocycle, thus having ring tension and this then destroys the conjugation between the CN and the PO moieties. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:671–676, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20169  相似文献   

20.
In the ionic charge‐transfer (CT) complex composed of bis(ethylenedithio)tetrathiafulvalene (ET) and 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ), C10H8S8·C8Cl2N2O2, the donor and acceptor molecules both form centrosymmetric dimers associated by strong face‐to‐face π–π interactions. The disordered DDQ molecules form a one‐dimensional π‐stacked column, while the ET molecules form a two‐leg ladder through additional short S...S contacts between adjacent π–π‐bonded dimers. The crystal structure of ET–DDQ revealed in this study will provide a valuable example of the two‐leg spin ladder system, which has rarely been reported for ET‐based CT complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号