首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Electroanalysis》2018,30(5):955-961
Herein, a sensitive electrochemical Pb2+ sensor was developed which based on DNA‐functionalized Au nanoparticles(AuNPs) and nanocomposite modified electrode. The DNA‐functionalized AuNPs includes two types of DNA, namely a Pb2+‐mediated DNAzyme comprising a biotin labeled‐enzyme DNA and a substrate strand DNA with a typical stem‐loop structure, and a ferrocene‐labeled linear signal DNA. Without Pb2+, the hairpin loop impeded biotin binding to avidin on the electrode. However,when the goal Pb2+ exists, the substratum strand was divided into two fragments that lead to the enzyme strand was substratumed on the electrode and biotin was admited by avidin, bringing about DNA‐functionalized AuNP(AuNPs) deposition on the electrode surface.The differential pulse voltammetry (DPV) was used to measure electrochemical response signals connect to signal DNA.For the amplification characters of the DNA‐functionalized AuNPs and nanocomposite, the electrochemical detection signal of Pb2+ was greatly improved and revealed high specificity. Under optimum conditions, the resultant biosensor bringed out a high sensitivity and selectivity for the determination of Pb2+. The proposed method was able to detect as low as picomolar Pb2+ concentrations.  相似文献   

2.
《Electroanalysis》2018,30(2):320-327
A novel molecularly imprinted polymer (MIP) photoelectrochemical sensor was fabricated for the highly sensitive and selective detection of triclosan. The MIP photoelectrochemical sensor was fabricated using graphite‐like carbon nitride (g‐C3N4) and gold nanoparticles (AuNPs) as photoelectric materials. The MIP/g‐C3N4‐AuNPs sensor used photocurrent as the detection signal and was triggered by ultraviolet light (UV‐Light 365 nm). g‐C3N4‐AuNPs was immobilized on indium tin oxide electrodes to produce the photoelectrochemically responsive electrode of the MIP/g‐C3N4‐AuNPs sensor. A MIP layer of poly‐o‐phenylenediamine was electropolymerized on the g‐C3N4‐AuNPs‐modified electrode to act as the recognition element of the MIP/g‐C3N4‐AuNPs sensor and to enable the selective adsorption of triclosan to the sensor through specific binding. Under optimal experimental conditions, the designed MIP/g‐C3N4‐AuNPs sensor presented high sensitivity for triclosan with a linear range of 2×10−12 to 8×10−10 M and a limit of detection of 6.01×10−13 M. Moreover, the MIP/g‐C3N4‐AuNPs sensor showed excellent selectivity. The sensor had been successfully applied in the analysis of toothpaste samples.  相似文献   

3.
4‐aminothiophenol‐modified gold nanoparticles (PATP‐AuNPs) were used as colorimetric and Surface Enhanced Raman Scattering (SERS) probes for the sensitive detection of Escherichia coliDH5α, as a model for Gram‐negative bacteria. The nano‐probes were easy to prepare through Au‐S bonding. Under optimized conditions, the PATP‐AuNPs surface with positive charge can bind with negatively charged E.coliDH5α via electrostatic adhesion, resulting in a quick color change from red to blue, and also a dramatic SERS signal enhancement from thousands of AuNPs aggregated on the surface of bacteria, which was utilized for both colorimetric and SERS detection of E.coliDH5α. For colorimetric analysis, it is the first time that the classical partial least square (PLS) regression was utilized to deal with the relationship between adsorption and E.coliDH5α concentrations. Excellent linear relationship was observed from 1.1 x 107 to 1.3 x 108 cfu mL‐1 with the average relative error (ARE) of 5.430, which was more accurate than the traditional extinction ration method. When coupled with confocal Raman microscope, this PATP‐AuNPs probes could be used to detection SERS signals produced from even one single bacterium. This bioassay is rapid, less expensive and convenient for bacteria detection and analysis. Therefore, PATP‐AuNPs system as a novel, versatile, on‐site and real‐time Gram‐negative bacteria sensor, would have a wide range of practical applications.  相似文献   

4.
A novel sensor based on carbon black‐gold nanoparticle nanocomposite modified screen‐printed electrode (CB‐AuNPs/SPE) for the detection of As(III) has been developed. The sensor was prepared modifying the SPE with CB and AuNPs by a drop casting automatable deposition. The As(III) was detected by CB‐AuNPs/SPE using anodic stripping voltammetry, with a high sensitivity (673±6 µA µM?1 cm?2) and reaching a LOD of 0.4 ppb. Finally, CB‐AuNPs/SPE has been applied to As(III) trace analysis in drinking water, obtaining satisfactory recovery values (99±9 %).  相似文献   

5.
A conjugated polymer was synthesized by the polymerization of 4,7‐dibromobenzo[2,1,3]thiadiazole ( M‐1 ) with tri{1,4‐diethynyl‐2,5‐bis(2‐(2‐methoxyethoxy)‐ethoxy)}‐benzene ( M‐2 ) via Pd‐catalyzed Sonogashira reaction. The polymer shows strong orange fluorescence. The responsive optical properties of the polymer on various metal ions were investigated through photoluminescence and UV–vis absorption measurements. The polymer displays highly sensitive and selective on‐off Hg2+ fluorescence quenching property in tetrahydrofuran solution in comparison with the other cations including Mg2+, Zn2+, Co2+, Ni2+, Cu2+, Ag+, Cd2+, and Pb2+. More importantly, the fluorescent color of the polymer sensor disappears after addition of Hg2+, which could be easily detected by naked eyes. The results indicate that this kind of polymer sensor incorporating benzo[2,1,3]thiadiazole moiety as a ligand can be used as a novel colorimetric and fluorometric sensor for Hg2+ detection. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A BiNPs@NPCGS nanocomposite was designed for highly efficient detection of multiple heavy‐metal ions by in situ synthesis of bismuth‐nanoparticle (BiNP)‐enriched nanoporous carbon (NPS) on graphene sheet (GS). The NPCGS was prepared by pyrolysis of zeolitic imidazolate framework‐8 (ZIF‐8) nanocrystals deposited on graphene oxide and displayed a high surface area of 1251 m2 g?1 and a pore size of 3.4 nm. BiNPs were deposited on NPCGS in situ by chemical reduction of Bi3+ with NaBH4. Due to the restrictive effect of the pore/surface structure of NPCGS, the BiNPs were uniform and well dispersed on the NPCGS. The BiNPs@NPCGS showed good conductivity and high effective area, and the presence of BiNPs allowed it to act as an efficient material for anodic‐stripping voltammetric detection of heavy‐metal ions. Under optimized conditions, the BiNPs@NPCGS‐based sensor could simultaneously determine Pb2+ and Cd2+ with detection limits of 3.2 and 4.1 nM , respectively. Moreover, the proposed sensor could also differentiate Tl+ from Pb2+ and Cd2+. Owing to its advantages of simple preparation, environmental friendliness, high surface area, and fast electron‐transfer ability, BiNPs@NPCGS showed promise for practical application in sensing heavy‐metal ions.  相似文献   

7.
Stable ultra‐thin Langmuir monolayers of calix[4]resorcinarene derivatives, namely: C‐dec‐9‐enylcalix[4]resorcinarene‐O‐(R+)‐α‐methylbenzylamine (Ionophore I ), and C‐dec‐9‐enylcalix[4]resorcinarene‐O‐(S‐)‐α‐methylbenzylamine (Ionophore II ), were prepared at the air‐water interface. Their interactions with a series of heavy metals (HM) ions (Cu2+, Pb2+, Hg2+ and Cd2+) present in the aqueous subphase were investigated by measuring surface pressure‐area isotherms, at different concentrations. The surface pressure‐area (Π‐A) isotherms were stable and demonstrated the HM amounts influence on the limiting area (Alim) values, therefore confirming the examined macrocycles capability to host the metallic toxicants. Additionally, a HM concentration dependence was realized and interpreted by a selective tendency of both ionophores towards Cu2+ and Cd2+ ions over Pb2+ and Hg2+, especially at high concentrations. The HM ions interactions with the applied calix[4]resorcinarene Langmuir ultra‐thin monolayers were interpreted based on the Gibbs‐Shishkovsky adsorption equation. Moreover, quartz crystal microbalance with impedance measurement (QCM‐I), was applied for the detection of HM ions in solutions. The QCM‐I results showed the effectiveness of the coated QCM‐I crystals in detecting the ions at different concentrations. The detection limit values were in the order of 0.16, 0.3, 0.65, 1.1 ppm (Ionophore I), as well 0.11, 0.45, 0.2, 0.89 (Ionophore II) for the Cu2+, Pb2+, Hg2+ and Cd2+ cations, respectively. Additionally, a selective tendency of both ionophores towards copper ions was shown.  相似文献   

8.
A series of novel double‐armed p‐(tert‐butyl)calix[4]arenes, carrying benzoylamido, 4‐nitrobenzoylamido, isonicotinamido, α‐naphthamido, acetamido, propionamido, or butyramido groups (see 2 – 8 , resp.) were synthesized in 80 – 86% yield by the reaction of the lower‐rim 1,3‐bis(aminoethoxy)‐substituted calix[4]arenediol 1 with the corresponding acylating agents. Their structures were established by elemental analysis, mass, IR, UV, and 1H‐NMR spectroscopy. Ion‐selective electrodes (ISEs) for Pb2+, carrying 2 – 8 in a PVC membrane as neutral ionophore, were prepared, and their selectivity coefficients for Pb2+ (K) were determined against other heavy‐metal ions, alkali and alkaline earth metal ions, and ammonium ions by means of the separate‐solution method. The results obtained indicated that the electrodes based on the calix[4]arene‐derived amides 2 – 8 as the neutral ionophores were all Pb2+ selective and exhibited almost theoretical Nernstian slopes, except for 3 and 4 . Typically, the Pb2+‐selective electrode based on 6 – 8 exhibited almost Nernstian slopes for Pb2+ over a relatively wide concentration range and had a fast response time as well as a long lifetime, although the silver ion interfered strongly. These ISEs based on 6 – 8 showed a relatively good Pb2+ selectivity against most of the interfering cations examined, except for Ag+. The effect of the side‐arm functions of calix[4]arene derivatives 2 – 8 on the Nernstian slopes and on the selectivity coefficients for Pb2+ obtained with the Pb2+ ISEs based on 2 – 8 is discussed.  相似文献   

9.
A sensitive mercury‐free lead (Pb2+) sensor has been proposed based on an ordered mesoporous carbon and Nafion composite film (OMC/Nafion) coated glassy carbon electrode. The analysis of Pb2+ using anodic stripping voltammetry (ASV) includes two steps. Pb2+ ions are firstly reduced and deposited on the electrode surface in a Pb2+ solution (10 mL) during a preconcentration step biased at ?1.0 V, followed by a measurement step by differential pulse voltammetry (DPV) within the potential range of ?0.8 to ?0.3 V (scan rate: 20 mV/s, frequency: 20 Hz, amplitude: 50 mV, pulse width: 50 ms). Linear calibration curve was found to be from 20 nM to 2 μM for Pb2+ with a sensitivity of 17.4±1.38 μA/μM after a 5‐min of preconcentration. The detection limit was estimated to be around 4.60±0.12 nM at the signal to noise ratio of 3. Reproducibility (RSD%) was found to be 3.0% for a single sensor with eight measurements and 4.3% for five sensors prepared with identical procedures. The practical application of the proposed lead sensor was verified by determination of trace level of Pb2+ in tap water sample.  相似文献   

10.
A 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonate) diammonium salt (ABTS)‐multiwalled carbon nanotubes (MWCNTs) nanocomposite/Bi film modified glassy carbon (GC) electrode was constructed for the differential pulse stripping voltammetric determination of trace Pb2+ and Cd2+. This electrode was more sensitive than ABTS‐free Bi/GC and Bi/MWCNTs/GC electrodes. Linear responses were obtained in the range from 0.5 to 35 μg L?1 for Cd2+ and 0.2 to 50 μg L?1 Pb(II), with detection limits of 0.2 μg L?1 for Cd2+ and 0.1 μg L?1 for Pb2+, respectively. This sensor was applied to the simultaneous detection of Cd2+ and Pb2+ in water samples with satisfactory recovery.  相似文献   

11.
In this paper, an electrochemical aptamer sensor was proposed for the highly sensitive detection of mercury ion (Hg2+). Carbon nanofiber (CNF) was prepared by electrospinning and high‐temperature carbonization, which was used for the loading of platinum nanoparticles (PtNPs) by the hydrothermal method. The Pt@CNF nanocomposite was modified on the surface of carbon ionic liquid electrode (CILE) to obtain Pt@CNF/CILE, which was further decorated by gold nanoparticles (AuNPs) through electrodeposition to get Au/Pt@CNF/CILE. Self‐assembling of the thiol‐based aptamer was further realized by the formation of Au‐S bond to get an electrochemical aptamer sensor (Aptamer/Au/Pt@CNF/CILE). Due to the specific binding of aptamer probe to Hg2+ with the formation of T‐Hg2+‐T structure, a highly sensitive quantitative detection of Hg2+ could be achieved by recording the changes of current signal after reacting with Hg2+ within the concentration range from 1.0 × 10?15 mol/L to 1.0 × 10?6 mol/L and the detection limit of 3.33 × 10?16 mol/L (3σ). Real water samples were successfully analyzed by this method.  相似文献   

12.
Magnetic and fluorescent assemblies of iron‐oxide nanoparticles (NPs) were constructed by threading a viologen‐based ditopic ligand, DPV2+, into the cavity of cucurbituril (CB[7]) macrocycles adsorbed on the surface of the NPs. Evidence for the formation of 1:2 inclusion complexes that involve DPV2+ and two CB[7] macrocycles was first obtained in solution by 1H NMR and emission spectroscopy. DPV2+ was found to induce self‐assembly of nanoparticle arrays (DPV2+?CB[7]NPs) by bridging CB[7] molecules on different NPs. The resulting viologen‐crosslinked iron‐oxide nanoparticles exhibited increased saturation magnetization and emission properties. This facile supramolecular approach to NP self‐assembly provides a platform for the synthesis of smart and innovative materials that can achieve a high degree of functionality and complexity and that are needed for a wide range of applications.  相似文献   

13.
A novel quartz crystal microbalance (QCM) sensor has been developed for highly selective and sensitive detection of Pb2+ by exploiting the catalytic effect of Pb2+ ions on the leaching of gold nanoparticles from the surface of a QCM sensor. The use of self-assembled gold nanoparticles (AuNPs) strongly enlarges the size of the interface and thus amplifies the analytical response resulting from the loss of mass. This results in a very low detection limit for Pb2+ (30 nM). The high selectivity is demonstrated by studying the effect of potentially interfering ions both in the absence and presence of Pb2+ ions. This simple and well reproducible sensor was applied to the determination of lead in the spiked drinking water. This work provides a novel strategy for fabricating QCM sensors towards Pb2+ in real samples. Figure
?  相似文献   

14.
A novel fluorescence chemical sensor for the highly sensitive and selective determination of Pb2+ ions in aqueous solutions is described. The preliminary potentiometric and spectrofluorimetric complexation studies in solution revealed that the lipophilic ligand 5,8-bis((5′-chloro-8′-hydroxy-7′-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane (L2) forms a highly stable and selective [PbL2]2+ and [Pb(L2)2]2+ complexes which results in a strong fluorescence quenching of the ligand. Thus, a novel fluorescence Pb2+ sensing system was prepared by incorporating L2 as a neutral lead-selective fluoroionophore in the plasticized PVC membrane containing tetrakis(p-chlorophenyl) borate as a liphophilic anionic additive. The response of the sensor is based on the strong selective fluorescence quenching of L2 by Pb2+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range of 3.0 × 10−7 to 2.5 × 10−2 M with a relatively fast response time of less than 5 min. In addition to high stability, reversibility and reproducibility, the sensor shows a unique selectivity towards Pb2+ ion with respect to common coexisting cations. The proposed fluorescence optode was successfully applied to the determination of lead in plastic toys and tap water samples.  相似文献   

15.
The addition of Bismuthiol II to the gold nanoparticles (AuNPs) solution led to the aggregation of AuNPs with a color change from red to blue. As a result, hot spots were formed and strong surface-enhanced Raman scattering (SERS) signal of Bismuthiol II was observed. However, the Bismuthiol II-induced aggregation of AuNPs could be reversed by Hg2+ in the system, accompanied by a remarkable color change from blue to red. As evidenced by UV–vis and SERS spectroscopy, the variation in absorption band and SERS intensity was strongly dependent on the concentration of Hg2+, suggesting a colorimetric and SERS dual-signal sensor for Hg2+. The sensor had a high sensitivity, low detection limits of 2 nM and 30 nM could be achieved by UV–vis spectroscopy and by SERS spectroscopy, respectively. Other environmentally relevant metal ions did not interfere with the detection of Hg2+. The method was successfully applied to detect Hg2+ in water samples. It was simple, rapid and cost-effective without any modifying or labeling procedure.  相似文献   

16.
In our study, the single‐use & eco‐friendly electrochemical sensor platform based on herbal silver nanoparticles (AgNPs) was developed for detection of mercury (II) ion (Hg2+). For this purpose, the surface of pencil graphite electrode (PGE) was modified with AgNPs and folic acid (FA), respectively. The concentrations of AgNPs and FA were firstly optimized by differential pulse voltammetry (DPV) to obtain an effective surface modification of PGE. Each step at the surface modification process was characterized by using cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS). The limit of detection (LOD) for Hg2+ was estimated and found to be 8.43 μM by CV technique. The sensor presented an excellent selectivity for Hg2+ against to other heavy metal ions such as Ca2+, Cd2+, Cr3+, Cu2+, Mg2+, Ni2+, Pb2+, Zn2+, Co2+ and Mn2+. Moreover, a rapid, selective and sensitive detection of Hg2+ was successfully performed in the samples of tap water within 1 min.  相似文献   

17.
Highly selective all solid state electrochemical sensor based on a synthesized compound i.e. 2‐(1‐(2‐((3‐(2‐hydroxyphenyl)‐1H‐pyrozol‐1‐yl)methyl)benzyl)‐1H‐pyrazol‐3‐yl)phenol (I) as an ionophore has been prepared and investigated for the selective quantification of chromium(III) ions. The effect of various plasticizers, viz. dibutyl phosphonate (DBP), dibutyl(butyl) phosphonate (DBBP), nitrophenyl octyl ether (NPOE), tris‐(2‐ethylhexyl)phosphonate (TEP), tri‐butyl phosphonate (TBP), dioctyl phthalate (DOP), dioctyl sebacate (DOS), benzyl acetate (BA) and acetophenone (AP) along with anion excluders NaTPB (sodium tetraphenyl borate) and KClTPB (potassium(tetrakis‐4‐chlorophenyl)borate was also studied. The optimum composition of the best performing membrane contained (I):KClTPB:NPOE:PVC in the ratio 15 : 3 : 40 : 42 w/w. The sensor exhibited near Nernstian slope of 20.1±0.2 mV/decade of activity in the working concentration range of 1.2×10?7–1.0×10?1 M, and in a pH range of 3.8–4.5. The sensor exhibited a fast response time of 10 s and could be used for about 5 months without any considerable divergence in potentials. The proposed sensor showed very good selectivity over most of the common cations including Na+, Li+, K+, Cu2+, Sr2+, Ni2+, Co2+, Ba2+, Hg2+, Pb2+, Zn2+, Cs+, Mg2+, Cd2+, Al3+, Fe3+and La3+. The activity of Cr(III) ions was successfully determined in the industrial waste samples by using this sensor.  相似文献   

18.
Solvent extraction of a mixture of PbII, MnII, FeIII, CoII, NiII and CdII in aqueous perchlorate medium by a phosphorylated hexahomotrioxacalix[3]arene (calix‐3) in dichloromethane shows a significant selectivity towards lead ions. The ligand can also be incorporated into a membrane to provide a new lead ion‐selective electrode (PbII‐ISE). A plasticized PVC membrane containing 30% PVC, 53.5% ortho‐nitrophenyloctylether (NPOE), 4.5% sodium tetraphenylborate (NaTPB) and 12% ionophore was directly coated on a graphite rod. This sensor gave a good Nernstian response of 29.7 ± 0.7 mV decade?1 over a concentration range of 1 × 10?8 – 1 × 10?4 M of lead ions, independent of pH in the range 3‐7, with a detection limit of 0.4 × 10?8 M. The dynamic response time of the electrode to achieve a steady potential was very fast and found to be less than 7 s. The selectivity relative to Ag+, NH4+, Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Fe3+, La3+, Sm3+, Dy3+, Er3+, Y3+ and Th4+ was examined. The electrode exhibits adequate stability with good reproducibility (with a slope of 29.6 ± 1.5 mV for 8 weeks). The characteristics of the sensor are compared with those of a tetraphosphorylated calix[4]arene (calix‐4) based PbII‐ISE, reported recently. The electrode was successfully used as an indicator electrode for a potentiometric titration of a lead solution using a standard solution of EDTA. The applicability of the sensor for lead ion measurements in various synthetic samples was also investigated.  相似文献   

19.
In this study, a novel non‐enzymatic hydrogen peroxide (H2O2) sensor was fabricated based on gold nanoparticles/carbon nanotube/self‐doped polyaniline (AuNPs/CNTs/SPAN) hollow spheres modified glassy carbon electrode (GCE). SPAN was in‐site polymerized on the surface of SiO2 template, then AuNPs and CNTs were decorated by electrostatic absorption via poly(diallyldimethylammonium chloride). After the SiO2 cores were removed, hollow AuNPs/CNTs/SPAN spheres were obtained and characterized by transmission electron microscopy (TEM), field‐emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical catalytic performance of the hollow AuNPs/CNTs/SPAN/GCE for H2O2 detection was evaluated by cyclic voltammetry (CV) and chronoamperometry. Using chronoamperometric method at a constant potential of ?0.1 V (vs. SCE), the H2O2 sensor displays two linear ranges: one from 5 µM to 0.225 mM with a sensitivity of 499.82 µA mM?1 cm?2; another from 0.225 mM to 8.825 mM with a sensitivity of 152.29 µA mM?1 cm?2. The detection limit was estimated as 0.4 µM (signal‐to‐noise ratio of 3). The hollow AuNPs/CNTs/SPAN/GCE also demonstrated excellent stability and selectivity against interferences from other electroactive species. The sensor was further applied to determine H2O2 in disinfectant real samples.  相似文献   

20.
《Electroanalysis》2017,29(3):821-827
An all‐solid‐state polymeric membrane Ca2+‐selective electrode based on hydrophobic octadecylamine‐functionalized graphene oxide has been developed. The hydrophobic composite in the ion‐selective membrane not only acts as a transduction element to improve the potential stability for the all‐solid‐state Ca2+‐selective electrode, but also is used to immobilize Ca2+ ionophore with lipophilic side chains through hydrophobic interactions. The developed all‐solid‐state Ca2+‐selective electrode shows a stable potential response in the linear range of 3.0×10−7–1.0×10−3 M with a slope of 24.7±0.3 mV/dec, and the detection limit is (1.6±0.2 )×10−7 M (n =3). Additionally, due to the hydrophobicity and electrical conductivity of the composite, the proposed all‐solid‐state ion‐selective electrode exhibits an improved stability with the absence of water layer between the ion‐selective membrane and the underlying glassy carbon electrode. This work provides a simple, efficient and low‐cost methodology for developing stable and robust all‐solid‐state ion‐selective electrode with ionophore immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号