共查询到20条相似文献,搜索用时 15 毫秒
1.
Cristián Cuerva Dr. José A. Campo Prof. Mercedes Cano Prof. Carlos Lodeiro 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(29):10168-10178
New dicatenar isoquinoline‐functionalized pyrazoles, [HpzR(n,n)iq] (R(n,n)=C6H3(OCnH2n+1)2; n=4, 6, 8, 10, 12, 14, 16, 18), have been strategically designed and synthesized to induce mesomorphic and luminescence properties into the corresponding bis(isoquinolinylpyrazolate)platinum(II) complexes [Pt(pzR(n,n)iq)2]. Thermal studies reveal that all platinum(II) compounds exhibit columnar mesophases over an exceptionally wide temperature range, above 300 °C in most cases. The photophysical behavior was also investigated in solution and in the solid state. As a consequence of the formation of Pt???Pt interactions, the weak greenish emission of the platinum derivatives turns bright orange in the mesophase. Additionally, the complexes are sensitive to a great variety of external inputs, such as temperature, mechanical grinding, pressure, solvents, and vapors. On this basis, they are used as dopant agents of a polyvinylpyrrolidone or poly(methyl methacrylate) polymer matrix to achieve stimuli‐responsive thin films. 相似文献
2.
Dr. Chang‐Qi Ma Dr. Elena Mena‐Osteritz Dr. Markus Wunderlin Dr. Gisela Schulz Prof. Dr. Peter Bäuerle 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(40):12880-12901
The synthesis of generational dendritic oligothiophenes (DOTs) has been successfully achieved by a divergent/convergent approach that involves halogenation, boronation, and palladium‐catalyzed Suzuki coupling reactions. The key point in the presented synthetic approach is the use of trimethylsilyl (TMS) protecting groups, which allow for the core‐lithiation and subsequent boronation of the dendrons and for the peripheral ipso‐substitution with iodine monochloride or N‐bromosuccimide. In addition, the TMS protecting groups can be completely removed by using tetrabutylammonium fluoride, thus yielding only‐thiophene‐based dendrons and dendrimers. Due to their highly branched structure, all these synthesized DOTs are soluble in organic solvents. Chemical structures were confirmed by NMR spectroscopic, mass spectrometric, and elemental analysis. Concentration‐dependent 1H NMR spectroscopic investigations revealed that the higher generation compounds tend to aggregate in solution. Such an aggregation behavior was further confirmed by measuring with MALDI‐TOF MS. Both MALDI‐TOF MS and gel‐permeation chromatography (GPC) analyses confirmed the monodispersity of the DOTs. Furthermore, GPC results revealed that these DOT molecules adopt a condensed globular molecular shape. Their optical and electronic properties were also investigated. The results indicated that these DOTs comprise various conjugated α‐oligothiophenes with different chain lengths, which results in the higher generation compounds showing broad and featureless UV/Vis absorption spectra and ill‐defined redox waves. 相似文献
3.
This review deals with the synthesis and applications of 2,2′:6′,2″‐terpyridines which are functionalized with thiophene ring, directly linked to the terpyridine core or via a spacer. Two main methodologies were used, ring closure of diketo‐derivatives and cross coupling reactions. The obtained compounds find applications in various fields especially in material sciences such as solar cells or macromolecular sciences. 相似文献
4.
Towards Molecular Construction Platforms: Synthesis of a Metallotricyclic Spirane Based on Bis(2,2′:6′,2“‐Terpyridine)RuII Connectivity 下载免费PDF全文
Dr. Ting‐Zheng Xie Kai Guo Mingjun Huang Dr. Xiaocun Lu Sheng‐Yun Liao Rajarshi Sarkar Dr. Charles N. Moorefield Prof. Stephen Z. D. Cheng Prof. Chrys Wesdemiotis Prof. George R. Newkome 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(36):11291-11294
The design and construction of the first multicomponent stepwise assembly of a <tpy‐RuII‐tpy>‐based (tpy=terpyridine), three‐dimensional, propeller‐shaped trismacrocycle, 8 , are reported. Key steps in the synthesis involve the preparation of a hexaterpyridinyl triptycene and its reaction with dimeric, 60°‐directional, bisterpyridine‐RuII building blocks. Characterization includes ESI‐ and ESI‐TWIM‐MS and TEM, along with 1D and 2D 1H NMR spectroscopy. 相似文献
5.
6.
Hong Suk Kim Min Ju Cho Kyung Moon Jung Young‐Jun Yu Young Woo Park Jung‐Il Jin Dong Hoon Choi 《Journal of polymer science. Part A, Polymer chemistry》2008,46(2):501-514
New light emitting dendrimers were synthesized by reacting 3,5‐bis‐(3,5‐bis‐benzyloxy‐benzyloxy)‐benzoic acid or 3,5‐bis‐[3,5‐bis‐(3,5‐bis‐benzyloxy‐benzyloxy)‐benzyloxy]‐benzoic acid with a carbazolyl vinyl spirobifluorene moiety. A blue‐emitting core dye was encapsulated by multibenzyloxy dendrons, and two dendrimers having different densities of dendrons were prepared. Photoluminescence (PL) studies of the dendrimers demonstrated that at the higher density of benzyloxy dendrons, the featureless vibronic transitions were improved, causing lesser excimer emission. The similarity of the solution and solid emission spectra of the larger dendrimer, 10 , revealed the suppression of molecular aggregation in the solid film, which is attributed to the presence of the bulky benzyloxy dendrons. The electroluminescence spectra of multilayered devices made using 10 predominantly exhibited blue emissions; similar emission was observed in the PL spectra of its thin film. The multilayered devices made using 3 , 9 , and 10 showed luminances of 1021 cd m?2 at 5 V, 916 cd m?2 at 6 V, and 851 cd m?2 at 6.5 V, respectively. The largest dendrimer, 10 , bearing a greater number of benzyloxy dendrons, exhibited a blue‐like emission with CIE 1931 chromaticity coordinates of x = 0.16 and y = 0.13, which is due to the influence of a higher shielding effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 501–514, 2008 相似文献
7.
Aleksandar Vinjevac Biserka Koji‐Prodi Marijana Vinkovi Kata Mlinari‐Majerski 《Acta Crystallographica. Section C, Structural Chemistry》2003,59(6):o314-o316
The conformational features of the title compound, C28H44S6, are compared with previously reported analogous macrocycles. The type of substituent affects considerably the conformation of the macrocycle. A 1H NMR titration of the title compound with AgBF4 indicated the formation of the 1:1 complex, which was not crystallized. 相似文献
8.
9.
Reza‐Ali Fallahpour Anthony Linden 《Acta Crystallographica. Section C, Structural Chemistry》2008,64(5):o283-o285
In the nearly planar title compound, C15H10IN3, the three pyridine rings exhibit transoid conformations about the interannular C—C bonds. Very weak C—H...N and C—H...I interactions link the molecules into ribbons. Significant π–π stacking between molecules from different ribbons completes a three‐dimensional framework of intermolecular interactions. Four different packing motifs are observed among the known structures of simple 4′‐substituted terpyridines. 相似文献
10.
Sebile Işık Büyükekşi Merve Erkısa Abdurrahman Şengül Engin Ulukaya Arzu Yılmaztepe Oral 《应用有机金属化学》2018,32(8)
A new dinuclear coordination compound of palladium(II), [Pd2(terpy)2(μ‐tas‐N1,N4)]SO4?11H2O ( 1 ), was synthesized by tethering a doubly deprotonated 1,2,4‐triazole‐3‐sulfonate (tas) linker generated in situ via oxidation of 1,2,4‐triazole‐3‐thione (tat) under the synthetic conditions. X‐ray diffraction analysis reveals that tat molecules adopt the thione form in the solid state, and are combined in infinite chains by symmetrically related classical intermolecular hydrogen bonds N1─H1???S1, N3─H3???N2 to give rise to R22(7) pattern in one‐dimensional chains along the b‐axis propagating along the a‐axis. Further short contacts through lone pairs of N2???S1 on the rings between the adjacent chains along the a‐axis lead to a two‐dimensional network structure. Compound 1 was characterized using infrared, 1H NMR and UV–visible spectroscopies, electrospray ionization mass spectrometry and X‐ray crystallography. The crystal structure determination of 1 reveals that the Pd(II) ions are coordinated with four nitrogen atoms: three from terpy and one from tas acting as an end‐to‐end (μ‐1,4) bridging ligand. The Pd(II) ions in 1 adopt a distorted square planar geometry. The anti‐growth effect of 1 was tested on colorectal cancer (HCT‐15), non‐small‐cell lung cancer (A549), prostate cancer (PC‐3) and cervical cancer (HeLa) cell lines using sulforhodamine B viability assay. The cytotoxic effect was further confirmed using adenosine triphosphate viability assay. Compound 1 shows a promising cytotoxic activity in the diverse cancer cell models in vitro (p <0.0001). 相似文献
11.
Runqiang Liu Ning Zhao Ping Liu Caixia An Zhaoxun Lian 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(5):451-455
π‐Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4′‐Phenyl‐2,2′:6′,2′′‐terpyridine (PTP) is an important N‐heterocyclic ligand involving π‐conjugated systems, however, studies concerning the third‐order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine CoII complex, bis(μ‐4,4′‐oxydibenzoato)‐κ3O,O′:O′′;κ3O′′:O,O′‐bis[(4′‐phenyl‐2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each CoII cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry‐related monodentate 4,4′‐oxydibenzoate (ODA2−) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)]2+ units are bridged by ODA2− ligands to form a ring‐like structure. The third‐order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z‐scan technique. The title compound shows a strong third‐order NLO saturable absorption (SA), while PTP exhibits a third‐order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is −37.3 × 10−7 m W−1, which is larger than that (8.96 × 10−7 m W−1) of PTP. The third‐order NLO susceptibility χ(3) values are calculated as 6.01 × 10−8 e.s.u. for (1) and 1.44 × 10−8 e.s.u. for PTP. 相似文献
12.
Xiaoming Liu Colin A. Kilner Mark Thornton‐Pett Malcolm A. Halcrow 《Acta Crystallographica. Section C, Structural Chemistry》2000,56(9):1142-1143
The title compound, C17H13N3, is a versatile precursor for polymeric terpyridine derivatives and their metal complexes. The molecule has transoid and near‐coplanar pyridine rings. However, the vinyl group is forced out of the plane of the terpyridyl moiety by a close H?H contact. 相似文献
13.
Igor V. Kazakov Michael Bodensteiner Alexey Y. Timoshkin 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(3):312-314
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well. 相似文献
14.
15.
Juan Granifo Beatriz Arvalo Rubn Gavio Sebastin Surez Ricardo Baggio 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(12):932-938
4′‐Substituted derivatives of 2,2′:6′,2′′‐terpyridine with N‐containing heteroaromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N‐donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N‐donor sites would also allow for the diversification of the types of noncovalent interactions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′‐terpyridine nucleus (tpy), with a pendant isoquinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with interplanar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy…Hisq contact of 2.32 Å. There are no strong noncovalent interactions in the structure, the main ones being of the π–π and C—H…π types, giving rise to columnar arrays along [001], further linked by C—H…N hydrogen bonds into a three‐dimensional supramolecular structure. An Atoms In Molecules (AIM) analysis of the noncovalent interactions provided illuminating results, and while confirming the bonding character for all those interactions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy…Hisq contact of 2.32 Å to which AIM ascribed an attractive character. 相似文献
16.
Seok‐Ho Hwang Pingshan Wang Charles N. Moorefield Jae‐Chang Jung Jeong‐Yeol Kim Sang‐Won Lee George R. Newkome 《Macromolecular rapid communications》2006,27(21):1809-1813
Summary: An O‐hexyl‐3,5‐bis(terpyridine)phenol ligand has been synthesized and transformed into a hexagonal Zn(II)‐metallomacrocycle by a facile self‐assembly procedure capitalizing on terpyridine‐Zn(II)‐terpyridine connectivity. The structural composition was confirmed by NMR and mass spectral techniques; photo‐ and electroluminescence properties were also investigated. The OLED device shows green electroluminescent emission at 515 nm with a maximum luminance of 39 cd · m−2 and maximum efficiency of 0.16 cd · A−1.
17.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(5):480-495
This work reports the synthesis of novel poly(3′,4′‐bis(alkyloxy)terthiophene) derivatives (PTTOBu, PTTOHex, and PTTOOct) and their supercapacitor applications as redox‐active electrodes. The terthiophene‐based conducting polymers have been derivatized with different alkyl pendant groups (butyl‐, hexyl‐, and octyl‐) to explore the effect of alkyl chain length on the surface morphologies and pseudocapacitive properties. The electrochemical performance tests have revealed that the length of alkyl substituent created a remarkable impact over the surface morphologies and charge storage properties of polymer electrodes. PTTOBu, PTTOHex, and PTTOOct‐based electrodes have reached up to specific capacitances of 94.3, 227.3, and 443 F g−1 at 2.5 mA cm−2 constant current density, respectively, in a three‐electrode configuration. Besides, these redox‐active electrodes have delivered satisfactory energy densities of 13.5, 29.3, and 60.7 W h kg−1 and power densities of 0.98, 1, and 1.1 kW kg−1 with good capacitance retentions after 10,000 charge/discharge cycles in symmetric solid‐state micro‐supercapacitor devices. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 480–495 相似文献
18.
The template condensation of 6,6″-bis(-methylhydrazino)-2,2′: 6′,2″-terpyridines L2 and L3 with 2,6-pyridinedialdehyde may give a number of different products depending upon the metal ion which is used. In the presence of nickel(II) the products are either the nickel(II) complexes of the 18-membered ring macrocycles L4 or L5 or the free macrocycles. The metal ion acts as a transient template and is removed in a chloride ion specific demetallation. The use of dimethyltin(IV) as a template results in the formation of complexes of the ring contracted macrocycles L6 or L7. 相似文献
19.
Michel H. C. J. van Houtem Rafael Martín‐Rapún Dr. Jef A. J. M. Vekemans Dr. E. W. Meijer Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(7):2258-2271
Two novel nonsymmetrical disc‐shaped molecules 1 and 2 based on 3,3′‐bis(acylamino)‐2,2′‐bipyridine units were synthesized by means of a statistical approach. Discotic 1 possesses six chiral dihydrocitronellyl tails and one peripheral phenyl group, whereas discotic 2 possesses six linear dodecyloxy tails and one peripheral pyridyl group. Preorganization by strong intramolecular hydrogen bonding and subsequent aromatic interactions induce self‐assembly of the discotics. Liquid crystallinity of 1 and 2 was determined with the aid of polarized optical microscopy, differential scanning calorimetry, and X‐ray diffraction. Two columnar rectangular mesophases (Colr) have been identified, whereas for C3‐symmetrical derivatives only one Colr mesophase has been found. 1 In solution, the molecularly dissolved state in chloroform was studied with 1H NMR spectroscopy, whereas the self‐assembled state in apolar solution was examined with optical spectroscopy. Remarkably, these desymmetrized discotics, which lack one aliphatic wedge, behave similar to the symmetric parent compound. To prove that the stacking behavior of discotics 1 and 2 is similar to that of reported C3‐symmetrical derivatives, a mixing experiment of chiral 1 with C3‐symmetrical 13 has been undertaken; it has shown that they indeed belong to one type of self‐assembly. This helical J‐type self‐assembly was further confirmed with UV/Vis and photoluminescence (PL) spectroscopy. Eventually, disc 2 , functionalized with a hydrogen‐bonding acceptor moiety, might perform secondary interactions with molecules such as acids. 相似文献
20.
Dr. Bingguang Zhang Dr. Yunjing Li Dr. Rui Liu Dr. Timothy M. Pritchett Dr. Alexander Azenkeng Dr. Angel Ugrinov Dr. Joy E. Haley Zhongjing Li Dr. Mark R. Hoffmann Dr. Wenfang Sun 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(15):4593-4606
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3π–π*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region. 相似文献