首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Controlling the chemistry of graphene is necessary to enable applications in materials and life sciences. Research beyond graphene oxide is targeted to avoid the highly defective character of the carbon framework. Herein, we show how to optimize the synthesis of oxo‐functionalized graphene (oxo‐G) to prepare high‐quality monolayer flakes that even allow for direct transmission electron microscopy investigation at atomic resolution (HRTEM). The role of undesired residuals is addressed and sources are eliminated. HRTEM provides clear evidence for the exceptional integrity of the carbon framework of such oxo‐G sheets. The patchy distribution of oxo‐functionality on the nm‐scale, observed on our highly clean oxo‐G sheets, corroborates theoretical predictions. Moreover, defined electron‐beam irradiation facilitates gentle de‐functionalization of oxo‐G sheets, a new route towards clean graphene, which is a breakthrough for localized graphene chemistry.  相似文献   

3.
Graphene oxide (GO) nanosheets can be functionalized with reactive pentafluorophenyl ester via esterification of the carboxylic groups. The resulting reactive GO nanosheets provide a versatile platform for grafting of amino‐containing polymers or biomolecules via ester–amine coupling. Coupling of poly[(9,9‐dioctylfluorene)‐alt‐(4‐amino‐phenylcarbazole)] (PFCz‐NH2), amino‐terminated hyperbranched polyglycerol (HPG‐NH2), and lysozyme (Lyz) was illustrated. The Al/GO‐g‐PFCz/ITO sandwich thin‐film device exhibits bistable electrical switching and rewritable memory effects. The GO‐g‐Lyz nanohybrids exhibit high bactericidal efficacy against S. aureus and E. coli, while the GO‐g‐HPG nanohybrids exhibit reduced cytotoxicity toward 3T3 fibroblasts.  相似文献   

4.
Graphene oxide (GO) is an amphiphilic soft material, which can accumulate at the water–air interface. However, GO sheets diffuse slowly in the aqueous phase because of their large size. It is still challenging to form high quality GO films in a controllable and simple way. In this study, we showed that GO sheets can quickly migrate to the water–air interface and form thin films when a suitable amount of acetone is directly mixed with a GO aqueous dispersion. The film formation rate and surface coverage of GO sheets depend on the volume of acetone added, GO dispersion concentration, and formation time. Among several organic solvents, acetone has its advantage for GO film formation owing to its three properties: a nonsolvent to GO aqueous dispersions, miscible with a GO aqueous dispersion, and fast evaporation. Furthermore, we have found that the film formation also is governed by the size of GO sheets and their oxygen content. Although smaller GO sheets could migrate to the water–air interface faster, the overlapping of small GO sheets and the increase in contact resistance is not desirable. A higher oxygen content in GO sheets could also result in smaller GO sheets. Multilayer GO films can be obtained through layer‐by‐layer dip‐coating. These findings open opportunities in developing simple scalable GO film fabrication processes.  相似文献   

5.
采用共组装法成功制备了电中性疏水抗癌药物喜树碱(CPT)/氧化石墨烯(GO)/Mg-Al类水滑石(HTlc)纳米杂化物. 先将CPT负载于荷负电的GO纳米片表面上制备成CPT/GO复合物,再与荷正电的HTlc纳米片(HNS)共组装,形成CPT/GO/HTlc纳米杂化物,其中GO纳米片和HNS相间叠加,CPT负载于层间. 采用X-射线衍射、透射电子显微镜、原子力显微镜、扫描电子显微镜-能量色谱仪、傅里叶变换红外光谱、紫外-可见分光光度计和热重/差示扫描量热分析等技术对纳米杂化物进行了表征. 37 ℃下分别在pH 7.4和4.0的磷酸缓冲液中,考察了CPT/GO/HTlc纳米杂化物的药物释放行为. 结果表明,CPT/GO/HTlc纳米杂化物的药物释放过程符合准二级动力学方程,且具pH响应性,在酸性(pH 4.0)介质中的释放速率和释放率明显高于中性(pH 7.4)介质. 共组装法是构筑药物/ GO/HTlc纳米杂化物的简便方法,该纳米杂化物在药物输送领域具有良好的应用前景.  相似文献   

6.
单云  张红琳  张凤 《应用化学》2015,32(7):837-842
分别采用改进Hummers方法和水热还原法制备了氧化石墨烯(GO)和还原氧化石墨烯(RGO)。 GO和RGO经透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、红外光谱(IR)、荧光发射和激发光谱(PL、PLE)等技术手段进行了表征。 荧光发射光谱显示,氧化石墨烯(GO)在可见光的激发下可以得到波长在600~800 nm范围内的宽谱近红外荧光。 通过比较氧化石墨烯水热还原前后的光谱变化,发现氧化石墨烯近红外荧光起源于氧化石墨烯的表面含氧基团,如C=O、COOH。 近红外荧光穿透性好、对生物组织损坏小,非常适合于生物成像,预示着氧化石墨烯在生物成像方面的应用潜力。  相似文献   

7.
Unintentionally formed nanocrystalline graphene (nc‐G) can act as a useful seed for the large‐area synthesis of a hexagonal boron nitride (h‐BN) thin film with an atomically flat surface that is comparable to that of exfoliated single‐crystal h‐BN. A wafer‐scale dielectric h‐BN thin film was successfully synthesized on a bare sapphire substrate by assistance of nc‐G, which prevented structural deformations in a chemical vapor deposition process. The growth mechanism of this nc‐G‐tailored h‐BN thin film was systematically analyzed. This approach provides a novel method for preparing high‐quality two‐dimensional materials on a large surface.  相似文献   

8.
4‐Carboxyphenyl groups are covalently grafted onto graphene oxide via diazonium chemistry for studying their role on the adsorption of iron oxide nanoparticles. The nanoparticles are deposited via a novel phase‐transfer approach involving specific interactions at the interface between two immiscible solvents. The increased density and the homogeneous distribution of surface carboxyl moieties enable the preparation of a nanocomposite with improved iron oxide distribution and loading. Structure‐properties relationships are investigated by analysing the electrochemical properties of the nanocomposites, which are regarded as promising active materials for application in supercapacitors. It is demonstrated that the nature of the interactions between the components similarly affects the overall electrochemical performances of the nanocomposites and the structure of the materials.  相似文献   

9.
A simple and easy process has been developed to efficiently dope phosphorus into a graphene oxide surface. Phosphorus‐doped graphene oxide (PGO) is prepared by the treatment of polyphosphoric acid with phosphoric acid followed by addition of a graphene oxide solution while maintaining a pH of around 5 by addition of NaOH solution. The resulting materials are characterized by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The as‐made PGO solution‐coated cloth exhibits excellent flame retardation properties. The PGO‐coated cloth emits some smoke at the beginning without catching fire for more than 120 s and maintains its initial shape with little shrinkage. In contrast, the pristine cloth catches fire within 5 s and is completely burned within 25 s, leaving trace amounts of black residue. The simple technique of direct introduction of phosphorus into the graphene oxide surface to produce phosphorus‐doped oxidized carbon nanoplatelets may be a general approach towards the low‐cost mass production of PGO for many practical applications, including flame retardation.  相似文献   

10.
石墨烯和氧化石墨烯由于特殊的电子、光学、力学性能已成为当今科学研究的热点.重点综述了近年来石墨烯和氧化石墨烯的表面功能化改性研究进展.首先介绍了石墨烯、氧化石墨烯的基本结构与性质.然后将表面功能化分为非共价键结合改性、共价键结合改性和元素掺杂改性.非共价键结合的功能化改性分为四类:π-π键相互作用、氢键作用、离子键作用以及静电作用.共价键结合的功能化改性分为四类:碳骨架功能化、羟基功能化、羧基功能化和环氧基功能化.元素掺杂改性分为N、B、P等不同元素的掺杂功能化.总结了石墨烯、氧化石墨烯基体与改性分子的相互作用和反应类型,以及改性产物的性能与应用.最后对石墨烯和氧化石墨烯在表面功能化改性方面的发展前景作了展望和预测.  相似文献   

11.
Using high‐resolution transmission electron microscopy and electron energy‐loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet‐chemistry approach. These liquid cells can feature van‐der‐Waals pressures up to 1 GPa, producing a miniaturized high‐pressure container for the crystallization in solution. The thickness of as‐received crystals is beyond the thermodynamic ultra‐thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near‐free‐standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous‐solution approaches of more metal‐oxide semiconductors with exotic phase structures and properties in graphene‐encapsulated confined cells.  相似文献   

12.
A graphene oxide (GO) membrane is supported on a ceramic hollow fiber prepared by a vacuum suction method. This GO membrane exhibited excellent water permeation for dimethyl carbonate/water mixtures through a pervaporation process. At 25 °C and 2.6 wt % feed water content, the permeate water content reached 95.2 wt % with a high permeation flux (1702 g m?2 h?1).  相似文献   

13.
14.
Superhydrophobic/superoleophilic composites HFGO@ZIF‐8 have been prepared from highly fluorinated graphene oxide (HFGO) and the nanocrystalline zeolite imidazole framework ZIF‐8. The structure‐directing and coordination‐modulating properties of HFGO allow for the selective nucleation of ZIF‐8 nanoparticles at the graphene surface oxygen functionalities. This results in localized nucleation and size‐controlled ZIF‐8 nanocrystals intercalated in between HFGO layers. The composite microstructure features fluoride groups bonded at the graphene. Self‐assembly of a unique micro‐mesoporous architecture is achieved, where the micropores originate from ZIF‐8 nanocrystals, while the functionalized mesopores arise from randomly organized HFGO layers separated by ZIF‐8 nanopillars. The hybrid material displays an exceptional high water contact angle of 162° and low oil contact angle of 0° and thus reveals very high sorption selectivity, fast kinetics, and good absorbencies for nonpolar/polar organic solvents and oils from water. Accordingly, Sponge@HFGO@ZIF‐8 composites are successfully utilized for oil–water separation.  相似文献   

15.
16.
17.
Boron clusters are proposed as a new concept for the design of magnesium‐battery electrolytes that are magnesium‐battery‐compatible, highly stable, and noncorrosive. A novel carborane‐based electrolyte incorporating an unprecedented magnesium‐centered complex anion is reported and shown to perform well as a magnesium‐battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium‐battery electrolytes is very high.  相似文献   

18.
Graphene oxide is regarded as a major precursor for graphene‐based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels–Alder cycloaddition. The Diels–Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high‐resolution 13C‐SS NMR spectra, we show evidence for the formation of new sp3 carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies.  相似文献   

19.
Graphene oxide (GO) is utilized as the modulator to tune the formation and development of amyloid fibrils (Aβ33–42). Atomic force microscopy temporal evolution measurements reveal that the initial binding between the peptide monomer and the large available surface of the GO sheets can redirect the assembly pathway of amyloid beta. The results support the possibility to develop graphene‐based materials to inhibit amyloidosis.  相似文献   

20.
The recently discovered twisted graphene has attracted considerable interest. A simple chemical route was found to prepare twisted graphene by covalently linking layers of exfoliated graphene containing surface carboxyl groups with an amine-containing linker (trans-1,4-diaminocyclohexane). The twisted graphene shows the expected selected area electron diffraction pattern with sets of diffraction spots out with different angular spacings, unlike graphene, which shows a hexagonal pattern. Twisted multilayer graphene oxide could be prepared by the above procedure. Twisted boron nitride, prepared by cross-linking layers of boron nitride (BN) containing surface amino groups with oxalic acid linker, exhibited a diffraction pattern comparable to that of twisted graphene. First-principles DFT calculations threw light on the structures and the nature of interactions associated with twisted graphene/BN obtained by covalent linking of layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号