首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choline‐binding modules (CBMs) have a ββ‐solenoid structure composed of choline‐binding repeats (CBR), which consist of a β‐hairpin followed by a short linker. To find minimal peptides that are able to maintain the CBR native structure and to evaluate their remaining choline‐binding ability, we have analysed the third β‐hairpin of the CBM from the pneumococcal LytA autolysin. Circular dichroism and NMR data reveal that this peptide forms a highly stable native‐like β‐hairpin both in aqueous solution and in the presence of trifluoroethanol, but, strikingly, the peptide structure is a stable amphipathic α‐helix in both zwitterionic (dodecylphosphocholine) and anionic (sodium dodecylsulfate) detergent micelles, as well as in small unilamellar vesicles. This β‐hairpin to α‐helix conversion is reversible. Given that the β‐hairpin and α‐helix differ greatly in the distribution of hydrophobic and hydrophilic side chains, we propose that the amphipathicity is a requirement for a peptide structure to interact and to be stable in micelles or lipid vesicles. To our knowledge, this “chameleonic” behaviour is the only described case of a micelle‐induced structural transition between two ordered peptide structures.  相似文献   

2.
Short peptides that fold into β‐hairpins are ideal model systems for investigating the mechanism of protein folding because their folding process shows dynamics typical of proteins. We performed folding, unfolding, and refolding molecular dynamics simulations (total of 2.7 μs) of the 10‐residue β‐hairpin peptide chignolin, which is the smallest β‐hairpin structure known to be stable in solution. Our results revealed the folding mechanism of chignolin, which comprises three steps. First, the folding begins with hydrophobic assembly. It brings the main chain together; subsequently, a nascent turn structure is formed. The second step is the conversion of the nascent turn into a tight turn structure along with interconversion of the hydrophobic packing and interstrand hydrogen bonds. Finally, the formation of the hydrogen‐bond network and the complete hydrophobic core as well as the arrangement of side‐chain–side‐chain interactions occur at approximately the same time. This three‐step mechanism appropriately interprets the folding process as involving a combination of previous inconsistent explanations of the folding mechanism of the β‐hairpin, that the first event of the folding is formation of hydrogen bonds and the second is that of the hydrophobic core, or vice versa.  相似文献   

3.
β Helices—helices formed by alternating d,l ‐peptides and stabilized by β‐sheet hydrogen bonding—are found naturally in only a handful of highly hydrophobic peptides. This paper explores the scope of β‐helical structure by presenting the first design and biophysical characterization of a hydrophilic d,l ‐peptide, 1 , that forms a β helix in methanol. The design of 1 is based on the β‐hairpin/β helix—a new supersecondary that had been characterized previously only for hydrophobic peptides in nonpolar solvents. Incorporating polar residues in 1 provided solubility in methanol, in which the peptide adopts the expected β‐hairpin/β‐helical structure, as evidenced by CD, analytical ultracentrifugation (AUC), NMR spectroscopy, and NMR‐based structure calculations. Upon titration with water (at constant peptide concentration), the structure in methanol ( 1 m ) transitions cooperatively to an extended conformation ( 1 w ) resembling a cyclic β‐hairpin; observation of an isodichroic point in the solvent‐dependent CD spectra indicates that this transition is a two‐state process. In contrast, neither 1 m nor 1 w show cooperative thermal melting; instead, their structures appear intact at temperatures as high as 65 °C; this observation suggests that steric constraint is dominant in stabilizing these structures. Finally, the 1H NMR CαH spectroscopic resonances of 1 m are downfield‐shifted with respect to random‐coil values, a hitherto unreported property for β helices that appears to be a general feature of these structures. These results show for the first time that an appropriately designed β‐helical peptide can fold stably in a polar solvent; furthermore, the structural and spectroscopic data reported should prove useful in the future design and characterization of water‐soluble β helices.  相似文献   

4.
We have developed a set of restraint potentials for β‐hairpin tilt relative to the membrane normal, β‐hairpin rotation around the β‐hairpin axis, and hairpin–hairpin distance. Such restraint potentials enable us to characterize the molecular basis of specific β‐hairpin tilt and rotation in membranes and hairpin–hairpin interactions at the atomic level by sampling their conformational space along these degrees of freedom, i.e., reaction coordinates, during molecular dynamics simulations. We illustrate the efficacy of the β‐hairpin restraint potentials by calculating the potentials of mean force (PMFs) as a function of tilt and rotation angles of protegrin‐1 (PG‐1), a β‐hairpin antimicrobial peptide, in an implicit membrane model. The peptide association in the membrane is also examined by calculating the PMFs as a function of distance between two PG‐1 peptides in various dimer interfaces. These novel restraint potentials are found to perform well in each of these cases and are expected to be a useful means to study the microscopic driving forces of insertion, tilting, and rotation of β‐hairpin peptides in membranes as well as their association in aqueous solvent or membrane environments particularly when combined with explicit solvent models. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

5.
In the early detection of rheumatoid arthritis (RA) synthetic filaggrin peptides serve as antigens for rheumatoid‐specific autoantibodies (anti‐citrullinated peptide antibody, ACPA) in ELISA tests. In this work we present a peptide that exhibits the binding epitope of ACPA in the form of a stable folding β‐hairpin. The homogeneity of the peptide folding was confirmed by NMR spectroscopy and might lead to the first proposed structure of the antibody‐bound conformation of the epitope.  相似文献   

6.
The incorporation of β‐amino acid residues into the antiparallel β‐strand segments of a multi‐stranded β‐sheet peptide is demonstrated for a 19‐residue peptide, Boc‐LVβFVDPGLβFVVLDPGLVLβFVV‐OMe (BBH19). Two centrally positioned DPro–Gly segments facilitate formation of a stable three‐stranded β‐sheet, in which β‐phenylalanine (βPhe) residues occur at facing positions 3, 8 and 17. Structure determination in methanol solution is accomplished by using NMR‐derived restraints obtained from NOEs, temperature dependence of amide NH chemical shifts, rates of H/D exchange of amide protons and vicinal coupling constants. The data are consistent with a conformationally well‐defined three‐stranded β‐sheet structure in solution. Cross‐strand interactions between βPhe3/βPhe17 and βPhe3/Val15 residues define orientations of these side‐chains. The observation of close contact distances between the side‐chains on the N‐ and C‐terminal strands of the three‐stranded β‐sheet provides strong support for the designed structure. Evidence is presented for multiple side‐chain conformations from an analysis of NOE data. An unusual observation of the disappearance of the Gly NH resonances upon prolonged storage in methanol is rationalised on the basis of a slow aggregation step, resulting in stacking of three‐stranded β‐sheet structures, which in turn influences the conformational interconversion between type I′ and type II′ β‐turns at the two DPro–Gly segments. Experimental evidence for these processes is presented. The decapeptide fragment Boc‐LVβFVDPGLβFVV‐OMe (BBH10), which has been previously characterized as a type I′ β‐turn nucleated hairpin, is shown to favour a type II′ β‐turn conformation in solution, supporting the occurrence of conformational interconversion at the turn segments in these hairpin and sheet structures.  相似文献   

7.
The misfolding and aggregation of the protein α‐synuclein (α‐syn), which results in the formation of amyloid fibrils, is involved in the pathogenesis of Parkinson’s disease and other synucleinopathies. The emergence of amyloid toxicity is associated with the formation of partially folded aggregation intermediates. Here, we engineered a class of binding proteins termed β‐wrapins (β‐wrap proteins) with affinity for α‐synuclein (α‐syn). The NMR structure of an α‐syn:β‐wrapin complex reveals a β‐hairpin of α‐syn comprising the sequence region α‐syn(37–54). The β‐wrapin inhibits α‐syn aggregation and toxicity at substoichiometric concentrations, demonstrating that it interferes with the nucleation of aggregation.  相似文献   

8.
The stability and unfolding mechanism of the N‐terminal β‐hairpin of the [2Fe‐2S] ferredoxin I from the blue‐green alga Aphanothece sacrum in pure methanol, 40% (v/v) methanol‐water, and pure water systems were investigated by 10 ns molecular dynamics simulations under periodic boundary conditions. The β‐hairpin was mostly in its native‐like state in pure methanol, whereas it unfolds dramatically following the ‘zip‐up’ mechanism when it was placed in pure water. Both interstrand and inside‐turn hydrogen bonds account for the stability of the β‐hairpin in its native‐like conformation, whereas hydrophobic interactions among nonpolar side chains are responsible for maintaining its stable loop‐like intermediate structures in 40% (v/v) methanol‐water. Reducing solvent polarity seems to increase the stability of the β‐hairpin in its native‐like structure. Methanol is likely to mimic the partially hydrophobic environment around the N‐terminal β‐hairpin by the subsequent α‐helix.  相似文献   

9.
Density functional theory calculations suggest that β‐turn peptide segments can act as a novel dual‐relay elements to facilitate long‐range charge hopping transport in proteins, with the N terminus relaying electron hopping transfer and the C terminus relaying hole hopping migration. The electron‐ or hole‐binding ability of such a β‐turn is subject to the conformations of oligopeptides and lengths of its linking strands. On the one hand, strand extension at the C‐terminal end of a β‐turn considerably enhances the electron‐binding of the β‐turn N terminus, due to its unique electropositivity in the macro‐dipole, but does not enhance hole‐forming of the β‐turn C terminus because of competition from other sites within the β‐strand. On the other hand, strand extension at the N terminal end of the β‐turn greatly enhances hole‐binding of the β‐turn C terminus, due to its distinct electronegativity in the macro‐dipole, but does not considerably enhance electron‐binding ability of the N terminus because of the shared responsibility of other sites in the β‐strand. Thus, in the β‐hairpin structures, electron‐ or hole‐binding abilities of both termini of the β‐turn motif degenerate compared with those of the two hook structures, due to the decreased macro‐dipole polarity caused by the extending the two terminal strands. In general, the high polarity of a macro‐dipole always plays a principal role in determining charge‐relay properties through modifying the components and energies of the highest occupied and lowest unoccupied molecular orbitals of the β‐turn motif, whereas local dipoles with low polarity only play a cooperative assisting role. Further exploration is needed to identify other factors that influence relay properties in these protein motifs.  相似文献   

10.
Conformational changes in proteins and peptides can be initiated by diverse processes. This raises the question how the variation of initiation mechanisms is connected to differences in folding or unfolding processes. In this work structural dynamics of a photoswitchable β‐hairpin model peptide were initiated by two different mechanisms: temperature jump (T‐jump) and isomerization of a backbone element. In both experiments the structural changes were followed by time‐resolved IR spectroscopy in the nanosecond to microsecond range. When the photoisomerization of the azobenzene backbone switch initiated the folding reaction, pronounced absorption changes related to folding into the hairpin structure were found with a time constant of about 16 μs. In the T‐jump experiment kinetics with the same time constant were observed. For both initiation processes the reaction dynamics revealed the same strong dependence of the reaction time on temperature. The highly similar transients in the microsecond range show that the peptide dynamics induced by T‐jump and isomerization are both determined by the same mechanism and exclude a downhill‐folding process. Furthermore, the combination of the two techniques allows a detailed model for folding and unfolding to be presented: The isomerization‐induced folding process ends in a transition‐state reaction scheme, in which a high energetic barrier of 48 kJ mol?1 separates unfolded and folded structures.  相似文献   

11.
The title compound, C30H46O9, prepared from a mixture of α‐ and β‐dihydro­artemisinin, has α‐ and β‐arteether moieties linked via an –O– bridge, so that the mol­ecule is asymmetric about the bridge. The endoperoxide bridges of the parent compounds have been retained in each half of the ether‐bridged dimer. The rings exhibit chair and twist–boat conformations.  相似文献   

12.
Peptide secondary structure mimetics are important tools in medicinal chemistry, as they provide analogues of endogenous peptides with new physicochemical and pharmacological properties. The development, synthesis, photochemical investigation, and conformational analysis of a stilbene‐type β‐hairpin mimetic capable of light‐triggered conformational changes have been achieved. In addition to standard spectroscopic techniques (nuclear Overhauser effects, amide temperature coefficients, circular dichroism spectroscopy), the applicability of self‐diffusion measurements (longitudinal eddy current delay pulsed‐field gradient spin echo (LED‐PGSE) NMR technique) in conformational studies of oligopeptides is demonstrated. The title compound shows photoisomerization of the stilbene chromophore, resulting in a change in solution conformation between an unfolded structure and a folded β‐hairpin.  相似文献   

13.
Recently, a rational approach for constructing β‐barrel protein mimics by the self‐assembly of peptide‐based building blocks has been demonstrated. We performed molecular dynamics simulations of nanoring formation by means of the self‐assembly of designed β‐sheet‐forming peptides. Several factors contributing to the stability of the nanoring structures with respect to size were investigated. Our simulations predicted that an optimal nanoring size may be achieved by minimizing repulsions due to steric hindrance between bulky groups while maintaining favorable hydrogen‐bond interactions between neighboring β‐sheet chains. It was shown that mutations in a test peptide, in which all or half of the tryptophan residues were replaced by phenylalanine, could enable the assembly of stable nanoring structures with smaller pore sizes. Insights into the fundamental factors driving the formation of peptide‐based nanostructures are expected to facilitate the design of novel functional bionanostructures.  相似文献   

14.
Peptides that adopt β‐helix structures are predominantly found in transmembrane protein domains or in the lipid bilayer of vesicles. Constructing a β‐helix structure in pure water has been considered difficult without the addition of membrane mimics. Herein, we report such an example; peptide 1 self‐assembles into a supramolecular β‐helix in pure water based on charge interactions between the individual peptides. Peptide 1 further showed intriguing transitions from small particles to helical fibers in a time‐dependent process. The fibers can be switched to vesicles by changing the pH value.  相似文献   

15.
In Alzheimer’s disease, amyloid‐β (Aβ) peptides aggregate into extracellular fibrillar deposits. Although these deposits may not be the prime cause of the neurodegeneration that characterizes this disease, inhibition or dissolution of amyloid fibril formation by Aβ peptides is likely to affect its development. ThT fluorescence measurements and AFM images showed that the natural antibiotic gramicidin S significantly inhibited Aβ amyloid formation in vitro and could dissolve amyloids that had formed in the absence of the antibiotic. In silico docking suggested that gramicidin S, a cyclic decapeptide that adopts a β‐sheet conformation, binds to the Aβ peptide hairpin‐stacked fibril through β‐sheet interactions. This may explain why gramicidin S reduces fibril formation. Analogues of gramicidin S were also tested. An analogue with a potency that was four‐times higher than that of the natural product was identified.  相似文献   

16.
Double helices are not common in polypeptides and proteins except in the peptide antibiotic gramicidin A and analogous l,d ‐peptides. In contrast to natural polypeptides, remarkable β‐double‐helical structures from achiral γ‐peptides built from α,β‐unsaturated γ‐amino acids have been observed. The crystal structures suggest that they adopted parallel β‐double helical structures and these structures are stabilized by the interstrand backbone amide H‐bonds. Furthermore, both NMR spectroscopy and fluorescence studies support the existence of double‐helical conformations in solution. Although a variety of folded architectures featuring distinct H‐bonds have been discovered from the β‐ and γ‐peptide foldamers, this is the first report to show that achiral γ‐peptides can spontaneously intertwine into β‐double helical structures.  相似文献   

17.
A digestion protocol was applied in triplicate by ten laboratories, simulating in vivo gastric and duodenal conditions. The intra‐ and inter‐laboratory variability in the kinetics of protein degradation was quantified, focussing on the digestion of β‐casein under gastric conditions, and of β‐lactoglobulin (β‐Lg) under duodenal conditions. The addition of surfactants such as phosphatidylcholine (PC) in the digestion mix was also evaluated. Identification and quantification of peptide bands on SDS‐PAGE gels formed the basis for analysis. An average intensity loss of 69% (SD=13.5) at 5 min (89% at 10 min, with SD=5.5) was observed for β‐casein, whereas the β‐Lg duodenal digestion showed an 82% loss at 30 min (SD=14.2). Constant rates of first‐order reactions showed that for fast reactions, inaccuracies in the time of first sampling contributed to the variability, which were also affected by image quality, saturation, and the splitting of time courses across gels. Breakdown products for β‐casein included ten other polypeptides, with four detected in all and two in most gels, and for β‐Lg ten polypeptides, with five detected in most, and two in two‐third of the cases. Addition of PC in the gastric phase led to β‐Lg intensity loss only a quarter as large as without PC and altered β‐Lg proteolysis in the duodenal compartment.  相似文献   

18.
Incorporation of silicon‐containing amino acids in peptides is known to endow the peptide with desirable properties such as improved proteolytic stability and increased lipophilicity. In the presented study, we demonstrate that incorporation of β‐silicon‐β3‐amino acids into the antimicrobial peptide alamethicin provides the peptide with improved membrane permeabilizing properties. A robust synthetic procedure for the construction of β‐silicon‐β3‐amino acids was developed and the amino acid analogues were incorporated into alamethicin at different positions of the hydrophobic face of the amphipathic helix by using SPPS. The incorporation was shown to provide up to 20‐fold increase in calcein release as compared with wild‐type alamethicin.  相似文献   

19.
Biocompatible and proteolysis‐resistant poly‐β‐peptides have broad applications and are dominantly synthesized via the harsh and water‐sensitive ring‐opening polymerization of β‐lactams in a glovebox or using a Schlenk line, catalyzed by the strong base LiN(SiMe3)2. We have developed a controllable and water‐insensitive ring‐opening polymerization of β‐amino acid N‐thiocarboxyanhydrides (β‐NTAs) that can be operated in open vessels to prepare poly‐β‐peptides in high yields, with diverse functional groups, variable chain length, narrow dispersity and defined architecture. These merits imply wide applications of β‐NTA polymerization and resulting poly‐β‐peptides, which is validated by the finding of a HDP‐mimicking poly‐β‐peptide with potent antimicrobial activities. The living β‐NTA polymerization enables the controllable synthesis of random, block copolymers and easy tuning of both terminal groups of polypeptides, which facilitated the unravelling of the antibacterial mechanism using the fluorophore‐labelled poly‐β‐peptide.  相似文献   

20.
Transmembrane β‐peptides are promising candidates for the design of well‐controlled membrane anchors in lipid membranes. Here, we present the synthesis of transmembrane β‐peptides with and without tryptophan anchors, as well as a novel iodine‐labeled d ‐β3‐amino acid. By using one or more of the heavy‐atom labeled amino acids as markers, the orientation of the helical peptide was inferred based on the electron‐density profile determined by X‐ray reflectivity. The β‐peptides were synthesized through manual Fmoc‐based solid‐phase peptide synthesis (SPPS) and reconstituted in unilamellar vesicles forming a right‐handed 314‐helix secondary structure, as shown by circular dichroism spectroscopy. We then integrated the β‐peptide into solid‐supported membrane stacks and carried out X‐ray reflectivity and grazing incidence small‐angle X‐ray scattering to determine the β‐peptide orientation and its effect on the membrane bilayers. These β‐peptides adopt a well‐ordered transmembrane motif in the solid‐supported model membrane, maintaining the basic structure of the original bilayer with some distinct alterations. Notably, the helical tilt angle, which accommodates the positive hydrophobic mismatch, induces a tilt of the acyl chains. The tilted chains, in turn, lead to a membrane thinning effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号