首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The postsynthetic modulation of capsules based on helical aromatic oligoamide foldamers would be a powerful approach for controlling their receptor properties without altering the initial monomer sequences. With the goal of developing a method to increase the size of a cavity within a helix, a single‐helical foldamer capsule was synthesized with a wide‐diameter central segment that was designed to intercalate with a second shorter helical strand. Despite the formation of stable double‐helical homodimers (Kdim>107 M ?1) by the shorter strand, when it was mixed with the single‐helical capsule sequence, a cross‐hybridized double helix was formed with Ka>105 M ?1. This strategy makes it possible to direct the formation of double‐helical heterodimers. On the basis of solution‐ and solid‐state structural data, this intercalation resulted in an increase in the central‐cavity size to give a new interior volume of approximately 150 Å3.  相似文献   

2.
3.
The photoinduced isomerization of diaminomaleonitrile (DAMN) to diaminofumaronitrile (DAFN) was suggested to play a key role in the prebiotically plausible formation of purine nucleobases and nucleotides. In this work we analyze two competitive photoisomerization mechanisms on the basis of state‐of‐the‐art quantum‐chemical calculations. Even though it was suggested that this process might occur on the triplet potential‐energy surface, our results indicate that the singlet reaction channel should not be disregarded either. In fact, the peaked topography of the S1/S0 conical intersection suggests that the deexcitation should most likely occur on a sub‐picosecond timescale and the singlet photoisomerization mechanism might effectively compete even with a very efficient intersystem crossing. Such a scenario is further supported by the relatively small spin–orbit coupling of the S1 and T2 states in the Franck–Condon region, which does not indicate a very effective triplet bypass for this photoreaction. Therefore, we conclude that the triplet reaction channel in DAMN might not be as prominent as was previously thought.  相似文献   

4.
5.
6.
Reported here is the first example of a 1,2‐dithienyldicyanoethene‐based visible‐light‐driven chiral fluorescent molecular switch that exhibits reversible trans to cis photoisomerization. The trans form in solution almost completely transforms into the cis form, accompanied by a 10‐fold decrease in its fluorescence intensity within 60 seconds when exposed to green light (520 nm). The reverse isomerization proceeds upon irradiation with blue light (405 nm). When doped into commercially available achiral liquid crystal hosts, this molecular switch efficiently induces luminescent helical superstructures, that is, a cholesteric phase. The intensity of the circularly polarized fluorescence as well as the selective reflection wavelength of the induced cholesteric phases can be reversibly tuned using visible light of two different wavelengths. Optically rewritable photonic devices using cholesteric films containing this molecular switch are described.  相似文献   

7.
The formation of helical structures through the supramolecular polymerization of a variety of self-assembling units is reviewed. These scaffolds are usually obtained by efficient transfer or amplification of chirality phenomena, in which the starting self-assembling molecules possess different elements of asymmetry, such as point or axial chirality. Relevant examples of helical supramolecular structures investigated under thermodynamic control are reviewed, and the helical outcome of remarkable examples of chiral entities obtained through kinetic control are also highlighted. Finally, selected examples of flexible macroscopic chirality and catalysis are described to illustrate the applicability of helical aggregates.  相似文献   

8.
9.
10.
11.
We report structural studies of a chiral tridentate ligand which forms helical cubanes with cobalt(II) and manganese(II). A quadruple helicate with (P)-chirality is obtained using a (S)-ligand with cobalt(II) but the ligand binds manganese(II) in one of two possible orientations and either (P)- or (M)-quadruple helicates may be observed for a given ligand enantiomer. The helicates may be linked into extended structures by p-nitrobenzoate capping ligands which show stacking interactions with neighbouring complexes. With cobalt(II) we find an extended helical structure with (M)-chirality linking helicates which themselves have (P)-chirality. With manganese(II) we observe a remarkable structure with extended (M)-helices coexisting with extended (P)-helices.  相似文献   

12.
α,β‐Linked oligothiazoles with head‐to‐tail connectivity are presented as a new family of helical scaffolds. Combinations of palladium‐catalyzed cross‐coupling reactions at the 5‐ and 4‐positions of 2‐phenylthiazole led to the synthesis of oligo(2‐phenylthiazoles) with ortho linkages with a variety of defined sequences. The secondary structures of the α,β‐linked oligo(2‐phenylthiazoles) showed a clear dependence on their sequences. X‐ray crystallography of the trimer, tetramer, and hexamer with head‐to‐tail connection revealed the formation of a helical structure, which was stabilized by a combination of intramolecular forces, including interheteroatom (S???N), CH–π, and π–π interactions. The introduction of a chiral end‐group successfully led to the induction of chirality into the helical conformations. Programmable sequences for controlled geometries and photofunctions have been demonstrated through the manifold connection pathways in α,β‐linked oligothiazoles.  相似文献   

13.
14.
Synthetic strategies that enable rapid construction of covalent organic nanotubes with an angstrom-scale tubular pore remain scarcely reported. Reported here is a remarkably simple and mild one-pot polymerization protocol, employing POCl3 as the polymerization agent. This protocol efficiently generates polypyridine amide foldamer-based covalent organic nanotubes with a 2.8 nm length at a yield of 50 %. Trapping single-file water chains in the 2.8 Å tubular cavity, rich in hydrogen-bond donors and acceptors, these tubular polypyridine ensembles rapidly and selectively transport water at a rate of 1.6×109 H2O⋅S−1⋅channel−1 and protons at a speed as fast as gramicidin A, with a high rejection of ions.  相似文献   

15.
The synthesis of four new oxo‐centered Fe clusters ( 1 a – c , 2 ) of the form [FeIII33‐O)(CH2=CHCOO)6] with acrylate as the bridging ligand gives rise to potentially intrinsically chiral oxo‐centered {M3} trimers that show a tendency to spontaneously resolve upon crystallization. For instance, 1 a , [FeIII33‐O)(CH2=CHCOO)6‐(H2O)3]+, crystallizes in the chiral space group P31 as a chloride salt. Crystallization of 1 b , [Fe33‐O)(C2H3CO2)6(H2O)3]NO3?4.5H2O, from aqueous solution followed by recrystallization from acetonitrile also gives rise to spontaneous resolution to yield the homochiral salt [Fe33‐O)(C2H3CO2)6‐(H2O)3]NO3?CH3CN of 1 c (space group P212121). Furthermore, the reaction of 1 a with hexamolybdate in acetonitrile gives the helical coordination polymer {[(Fe33‐O)L6(H2O))(MoO4)‐(Fe33‐O)L6(H2O)2)]?2CH3CN?H2O} 2 (L: H2C?CHCOO), which crystallizes in the space group P21. The nature of the ligand geometry allows the formation of atropisomers in both the discrete ( 1 a – c ) and linked {Fe3} clusters ( 2 ), which is described along with a magnetic analysis of 1 a and 2 .  相似文献   

16.
17.
The following polymer structural transitions were achieved using light: preferred‐handed helix formation for poly(9,9‐di‐n‐octylfluoren‐2,7‐diyl), helix racemization (helix–helix transition) for poly(2,7‐bis(4‐t‐butylphenyl)fluoren‐9‐yl acrylate) and poly(2,5‐bis[4‐((S)‐2‐methylbutyloxy)phenyl]styrene), and helix decomposition for poly(2,7‐bis(4‐t‐butylphenyl)‐9‐methylfluoren‐9‐yl acrylate) and poly(2,7‐bis(4‐t‐butylphenyl)fluoren‐9‐ylmethyl methacrylate). Although these types of transitions and chemical transformations have been studied mainly using heat or chemicals as stimuli, light can also cause these structural alterations. In the helix construction and the helix–helix transition, a key transition is a twist‐coplanar conformational change of a biphenyl or an aryl–aryl unit in the side chain or the main chain of the polymer. Furthermore, the helix–helix transition was caused only by light and not by heat. The examples discussed in this review are expected to trigger off a new direction in synthesis and reaction of chiral polymers.  相似文献   

18.
19.
The design of supramolecular motifs with tuneable stability and adjustable supramolecular polymerisation mechanisms is of crucial importance to precisely control the properties of supramolecular assemblies. This report focuses on constructing π‐conjugated oligo(phenylene ethynylene) (OPE)‐based one‐dimensional helical supramolecular polymers that show a cooperative growth mechanism. Thus, a novel set of discotic molecules comprising a rigid OPE core, three amide groups, and peripheral solubilising wedge groups featuring C3 and C2 core symmetry was designed and synthesised. All of the discotic molecules are crystalline compounds and lack a columnar mesophase in the solid state. In dilute methylcyclohexane solution, one‐dimensional supramolecular polymers are formed stabilised by threefold intermolecular hydrogen bonding and π–π interactions, as evidenced by 1H NMR measurements. Small‐angle X‐ray and light scattering measurements reveal significant size differences between the columnar aggregates of C3‐ and C2‐symmetrical discotics, that is, the core symmetry strongly influences the nature of the supramolecular polymerisation process. Temperature‐dependent CD measurements show a highly cooperative polymerisation process for the C3‐symmetrical discotics. In contrast, the self‐assembly of C2‐symmetrical discotics shows a smaller enthalpy release upon aggregation and decreased cooperativity. In all cases, the peripheral stereogenic centres induce a preferred handedness in the columnar helical aggregates. Moreover, one stereogenic centre suffices to fully bias the helicity in the C2‐symmetrical discotics. Finally, chiral amplification studies with the C3‐symmetrical discotics were performed by mixing chiral and achiral discotics (sergeants‐and‐soldiers experiment) and discotics of opposite chirality (majority‐rules experiment). The results demonstrate a very strong sergeants‐and‐soldiers effect and a rather weak majority‐rules effect.  相似文献   

20.
Synthetic strategies that enable rapid construction of covalent organic nanotubes with an angstrom‐scale tubular pore remain scarcely reported. Reported here is a remarkably simple and mild one‐pot polymerization protocol, employing POCl3 as the polymerization agent. This protocol efficiently generates polypyridine amide foldamer‐based covalent organic nanotubes with a 2.8 nm length at a yield of 50 %. Trapping single‐file water chains in the 2.8 Å tubular cavity, rich in hydrogen‐bond donors and acceptors, these tubular polypyridine ensembles rapidly and selectively transport water at a rate of 1.6×109 H2O?S?1?channel?1 and protons at a speed as fast as gramicidin A, with a high rejection of ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号