首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Extensive single point turbulence measurements made in the boundary layer on a mildly curved heated convex wall show that the turbulence heat fluxes and Stanton number are more sensitive to a change in wall curvature than the Reynolds stresses and skinfriction coefficient, and that downstream, as the flow adjusts to new curved conditions, the St/c f ratio of Reynolds analogy is appreciably lower than in plane wall flow for the same conditions. Details of the turbulence structure in unheated flow have been documented in an earlier paper; temperature field measurements now described comprise mean temperature distributions, the streamwise variation of wall heat flux, profiles of the temperature variance, transverse and streamwise heat fluxes, and triple correlations. Turbulent diffusion of heat flux is drastically reduced even by mild curvature; changes in the heat fluxes are of the same order as changes in the shear stress, that is, an order of magnitude greater than the ratio of boundary layer thickness to wall radius of curvature. The data include plane flow measurements taken in a developed boundary layer upstream of a change in wall curvature.  相似文献   

2.
Combined free and forced convection for developed flow in a curved pipe with arbitrary curvature ratio is studied numerically. The curved pipe is heated with axially uniform heat flux, while the wall temperature is maintained peripherally uniform. The buoyancy force is accounted by the Boussinesq approximation. The effects of the Dean, Prandtl, and Rayleigh numbers and especially of a wide range of curvature ratios on the flow resistance and the average heat transfer rate are presented. The significant distortion of the dividing streamline and the appearance of the secondary flow with one dominant cell for pipe flow with higher buoyancy force and curvature ratio are also discussed.  相似文献   

3.
A new mechanism of the formation of spatially periodic structures on the nose surfaces of cylindrically blunted bodies in a hypersonic transverse flow is investigated. According to this mechanism, a curved shock wave produces a vortex flow, while the vortex, which is conserved in the presence of weak dissipation, acts on the shock and maintains its curved shape. The realizability of this vortex formation mechanism is verified by direct numerical simulation using the FLUENT software package. It is confirmed that in the case of uniform hypersonic freestream both plane and three-dimensional modes of the steady flow past the cylinder nose can exist. The three-dimensional mode is characterized by periodic-in-span vortex structures and considerable heat flux peaks on the nose surface. The calculated results are compared with the experimental data.  相似文献   

4.
In this paper, fully developed convective heat transfer of viscoelastic flow in a curved pipe under the constant heat flux at the wall is investigated analytically using a perturbation method. Here, the curvature ratio is used as the perturbation parameter and the Oldroyd-B model is applied as the constitutive equation. In the previous studies, the Dirichlet boundary condition for the temperature at the wall has been used to simplify the solution, but here exactly the non-homogenous Neumann boundary condition is considered to solve the problem. Based on this solution, the non-axisymmetric temperature distribution of Dean flow is obtained analytically and the effect of flow parameters on the flow field is investigated in detail. The current analytical results indicate that increasing the Weissenberg number, viscosity ratio, curvature ratio, and Prandtl number lead to the increase of the heat transfer in the Oldroyd-B fluid flow.  相似文献   

5.
The fundamental mechanism of vortex shedding past a curved cylinder has been investigated at a Reynolds number of 100 using three-dimensional spectral/hp computations. Two different configurations are presented herein: in both cases the main component of the geometry is a circular cylinder whose centreline is a quarter of a ring and the inflow direction is parallel to the plane of curvature. In the first set of simulations the cylinder is forced to transversely oscillate at a fixed amplitude, while the oscillation frequency has been varied around the Strouhal value. Both geometries exhibit in-phase vortex shedding, with the vortex cores bent according to the body's curvature, although the wake topology is markedly different. In particular, the configuration that was found to suppress the vortex shedding in absence of forced motion exhibits now a primary instability in the near wake. A second set of simulations has been performed imposing an oscillatory roll to the curved cylinder, which is forced to rotate transversely around the axis of its bottom section. This case shows entirely different wake features from the previous one: the vortex shedding appears to be out-of-phase along the body's span, with straight cores that tend to twist after being shed and manifest a secondary spanwise instability. Further, the damping effect stemming from the transverse planar motion of the part of the cylinder parallel to the flow is no longer present, leading to a positive energy transfer from the fluid to the structure.  相似文献   

6.
Opposition controlled fully developed turbulent flow along a thin cylinder is analyzed by means of direct numerical simulations. The influence of cylinder curvature on the skin-friction drag reduction effect by the classical opposition control (i.e., the radial velocity control) is investigated. The curvature of the cylinder affects the uncontrolled flow statistics; for instance, skin-friction coefficient increases while Reynolds shear stress (RSS) and turbulent intensity decrease. However, the control effect in the case of a small curvature is similar to that in channel flow. When the curvature is large, the maximum drag reduction rate decreased. However, the optimal location of the detection plane is the same as that in a flat plate. Further, the drag reduction effect is achieved even on a high detection plane where the drag increases in the flat plate. Although a difference in the drag reduction effect can be observed with a change in the curvature, its mechanism considered in this analysis based on the transport of the Reynolds stress is similar to that of the flat plate.  相似文献   

7.
Using a quasi-static approach valid for Stefan numbers less than one, we derive approximate equations governing the movement of a phase change front for materials which generate internal heat. These models are applied for both constant surface temperature and constant surface heat flux boundary conditions, in cylindrical, spherical, plane wall and semi-infinite geometries. Exact solutions with the constant surface temperature condition are obtained for the steady-state solidification thickness using the cylinder, sphere, and plane wall geometries which show that the thickness depends on the inverse square root of the internal heat generation. Under constant surface heat flux conditions, closed form equations can be obtained for the three geometries. In the case of the semi-infinite wall, we show that for constant temperature and constant heat flux out of the wall conditions, the solidification layer grows then remelts.  相似文献   

8.
Hyperbolic heat conduction in a plane slab, infinitely long solid cylinder and solid sphere with a time dependent boundary heat flux is analytically studied. The solution is based on the separation of variables method and Duhamel’s principle. The temperature distribution, the propagation and reflection of the temperature wave and the effect of geometry on the shape of the wave front are studied for the case of a rectangular pulsed boundary heat flux. Comparisons with the solution obtained for Fourier heat conduction are performed by considering the limit of a vanishing thermal relaxation time.  相似文献   

9.
The next order conditions across a three-dimensional curved shock near stagnationpoint have been established,including the effects of heat conduction,viscosity and the shockstructure.These shock conditions involve the local shock curvature in addition to its localinclination.Explicit results have been obtained for the correctional formulations in themass flux across the shock,the stagnation enthalpy,the tangential component of velocityand the normal component of momentum flux.  相似文献   

10.
The present investigation deals with Dielectric Barrier Discharge (DBD) induced jets flowing over curved surfaces and studied in the framework of a circulation control application, carried out by acting near the rounded trailing-edge of an airfoil. These jets are characterized experimentally via Particle Image Velocimetry (PIV) in quiescent air conditions. The study assesses the evolution of these flows in terms of self-similarity of the mean flow and of its turbulent components. DBD wall jets evolution in the streaming direction is also analyzed through the rate of spread and the maximum velocity decay evolution as commonly done for fluidic wall jets, and also through several normalized quantities deriving from different length and velocity scales. A comparison with a canonical flow, such as the classical wall jet flowing over plane or curved surfaces, is made in order to find out the similarities and the discrepancies between these two flows. Results reveal that DBD wall jets and canonical fluidic wall jets show comparable properties in the diffusion zone. Compared to the plane DBD wall jet, centrifugal forces are responsible of the greater spread of curved DBD wall jets and are likely the source of instabilities leading to their transitional state. The momentum flux of the induced jet and the radius of curvature of the surface are two relevant scales for DBD induced flows developing over curved surfaces.  相似文献   

11.
The two-dimensional (2D) motion of the Jeffrey fluid by the curved stretching sheet coiled in a circle is investigated. The non-Fourier heat flux model is used for the heat transfer analysis. Feasible similarity variables are used to transform the highly nonlinear ordinary equations to partial differential equations (PDEs). The homotopy technique is used for the convergence of the velocity and temperature equations. The effects of the involved parameters on the physical properties of the fluid are described graphically. The results show that the curvature parameter is an increasing function of velocity and temperature, and the temperature is a decreasing function of the thermal relaxation time. Besides, the Deborah number has a reverse effect on the pressure and surface drag force.  相似文献   

12.
The flow corresponding to the start-up of an arbitrarily shaped body in a viscous heat-conducting gas is analyzed. The established fact of fluid incompressibility at short times is used. In the first approximation, in the neighborhood of each point on the body surface the flow and heat transfer are proved to be the same as for an infinite plate coinciding with the tangential plane at this point. The corrections for the curvature of the body surface are found. For determining the flows near a cylinder of arbitrary shape and near a spherical bluntness, the start-up problems for a circular cylinder and a sphere are considered. The possibility of extending the results to the case of reacting gases is discussed.  相似文献   

13.
Based on exact Green strain of spatial curved beam, the nonlinear strain-displacement relation for plane curved beam with varying curvature is derived. Instead of using the previous straight beam elements, curved beam elements are used to approximate the curved beam with varying curvature. Based on virtual work principle, rigid-flexible coupling dynamic equations are obtained. Physical experiments were carried out to capture the large overall motion and the strain of curved beam to verify the present rigid-flexible coupling formulation for curved beam based on curved beam element. Numerical results obtained from simulations were compared with those results from the physical experiments. In order to illustrate the effectiveness of the curved beam element methodology, the simulation results of present curved beam elements are compared with those obtained by previous straight beam elements. The dynamic behavior of a slider-crank mechanism with an initially curved elastic connecting rod is investigated. The advantage of employing generalized-α method is pointed out and the special nonlinear dynamic characteristics of the curved beam are concluded.  相似文献   

14.
Experiments have been conducted to investigate the two-degree-of-freedom vortex-induced vibration (VIV) response of a rigid section of a curved circular cylinder with low mass-damping ratio. Two curved configurations, a concave and a convex, were tested regarding the direction of the flow, in addition to a straight cylinder that served as reference. Amplitude and frequency responses are presented versus reduced velocity for a Reynolds number range between 750 and 15 000. Results for the curved cylinders with concave and convex configurations revealed significantly lower vibration amplitudes when compared to the typical VIV response of a straight cylinder. However, the concave cylinder showed relatively higher amplitudes than the convex cylinder which were sustained beyond the typical synchronisation region. We believe this distinct behaviour between the convex and the concave configurations is related to the wake interference taking place in the lower half of the curvature due to perturbations generated in the horizontal section when it is positioned upstream. Particle-image velocimetry (PIV) measurements of the separated flow along the cylinder highlight the effect of curvature on vortex formation and excitation revealing a complex fluid–structure interaction mechanism.  相似文献   

15.
Transient mixed-mode elastodynamic crack growth along arbitrary smoothly varying paths in functionally graded materials (FGMs) is considered. The property gradation in FGMs is considered by varying shear modulus and mass density exponentially along the gradation direction. Crack tip out of plane displacement fields and their gradients are developed for propagating curved cracks of arbitrary velocity using asymptotic approach. The mode-mixity due to the inclination of curved crack with respect to property gradient is accommodated in the analysis through superposition of the opening and shear modes. The expansion of the displacement fields and their gradients around the crack-tip are derived in powers of radial coordinates with the coefficients of expansion depending on the instantaneous value of the local curvature of the crack path, time derivatives of crack-tip speed, and time derivative of mode-I and mode-II stress intensity factors. The effect of the transient terms instantaneous local curvature, crack-tip speed, time derivatives of crack-tip speed, and time derivative of mode-I and mode-II stress intensity factors on the contours of constant out of plane displacement are also discussed.  相似文献   

16.
A numerical treatment for axisymmetric flow and heat transfer due to a stretching cylinder under the influence of a uniform magnetic field and prescribed surface heat flux is presented. Numerical results are obtained for dimensionless velocity, temperature, skin friction coefficient and Nusselt number for several values of the suction/injection, magnetic and curvature parameters as well as the Prandtl number. The present study reveals that the controlling parameters have strong effects on the physical quantities of interest. It is seen that the magnetic field enhances the dimensionless temperature inside the thermal boundary layer, whereas it reduces the dimensionless velocity inside the hydrodynamic boundary layer. Heat transfer rate reduces, while the skin friction coefficient increases with magnetic field.  相似文献   

17.
In the wake of a rectangular cylinder measurements of mean velocity and some turbulent stresses are carried out in a straight duct and in a curved duct. The difference in turbulent quantities in the wake of the body, in the straight duct an in the curved duct is significant especially in the downstream side of the wake. The shear stresses are more sensitive to curvature than the normal stresses.  相似文献   

18.
两圆柱体结合面的接触热导分形模型研究   总被引:1,自引:0,他引:1  
基于三维分形理论,在考虑微凸体的弹性变形、弹塑性变形和塑性变形的基础上,建立了两圆柱体结合面接触热导分形模型。通过数值仿真,分析了分形维数,分形尺度参数、圆柱体曲率半径和接触类型对接触热导的影响。研究结果表明:接触热导随着分形维数的增大而增大,随着分形尺度参数的增大而减小;相同参数下,内接触比外接触的接触热导要大;此外,当固定其中一个圆柱体的曲率半径时,随着另一个圆柱体曲率半径的增大,接触热导增大。该模型为开展齿轮等曲面接触热导的研究提供了理论基础。  相似文献   

19.
The present experimental investigation deals with the behaviour of a wake generated by a square cylinder developing in a curved diffuser, a curved duct, a straight duct and a straight diffuser having a same pressure gradient as in the curved diffuser. This enables a systematic study of the effects of curvature and pressure gradient on wake development. It is seen that the curvature makes the wake asymmetric; the wake half width increases on the inner side and decreases on the outer side; the inner side being the region between the centreline and the wall closer to the centre of curvature and the outer side being the region between the centreline and the other wall. It causes a higher entrainment in the inner side as compared to the outer side. An adverse pressure gradient, on the other hand, causes a higher wake growth and velocity defect but reduces the rate of decay of the velocity defect. These are not altered significantly when the curvature and pressure gradient effects are combined. The curvature enhances the Reynolds stresses and the kinetic energy on the inner side and suppresses them on the outer side which makes their profiles asymmetric. These profiles become more and more asymmetric with increase in the streamwise distance. When the effects of curvature and adverse pressure gradient are combined, the profiles become further asymmetric.Department of Aerospace Engineering  相似文献   

20.
The non-linear response to finite torsion accompanied by arbitrary radial heating of a cylinder of incompressible thermoelastic material with temperature-independent heat flux response is shown to be characterized completely by constitutive data collected from a block of the same material in a state of simple shear with uniform heating normal to the plane of shear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号