首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In an effort to understand and enhance the stereochemical outcome of the MOM-ether directed rearrangement of allylic trichloroacetimidates we have investigated various reaction conditions for this process. A range of Pd(ii) and other metal catalysts have been shown to effectively catalyse the rearrangement providing the subsequent allylic amides in high selectivity (up to 11 : 1 ratio of diastereomers). The replacement of THF as a solvent in this reaction with non-coordinating solvents such as toluene has led to an enhancement of the directing effect resulting in a significant increase in the diastereoselective outcome (15 : 1 ratio). The reaction was also carried out for the first time, using a highly coordinating ionic solvent which disrupts binding of the Pd(ii)-catalyst to the MOM-ether yielding the allylic amide in only moderate diastereoselectivity. These results provide further evidence for the ether directed aza-Claisen rearrangement of allylic trichloroacetimidates.  相似文献   

2.
The ammonium-directed olefinic epoxidations of a range of differentially N-substituted cyclic allylic and homoallylic amines (derived from cyclopentene, cyclohexene, and cycloheptene) have been investigated, and the reaction kinetics have been analyzed. The results of these studies suggest that both the ring size and the identity of the substituents on nitrogen are important in determining both the overall rate and the stereochemical outcome of the epoxidation reaction. In general, secondary amines or tertiary amines with nonsterically demanding substituents on nitrogen are superior to tertiary amines with sterically demanding substituents on nitrogen in their ability to promote the oxidation reaction. Furthermore, in all cases examined, the ability of the (in situ formed) ammonium substituent to direct the stereochemical course of the epoxidation reaction is either comparable or superior to that of the analogous hydroxyl substituent. Much slower rates of ring-opening of the intermediate epoxides are observed in cyclopentene-derived and cycloheptene-derived allylic amines as compared with their cyclohexene-derived allylic and homoallylic amine counterparts, allowing for isolation of these intermediates in both of the former cases.  相似文献   

3.
Regio-, diastereo-, and enantioselective coupling reactions between imines and allylic alcohols have been developed. These coupling reactions deliver complex homoallylic amine products through a convergent C-C bond forming process that does not proceed through intermediate allylic organometallic reagents. In general, convergent coupling, by exposure of an allylic alkoxide to a preformed Ti-imine complex, occurs with allylic transposition in a predictable and stereocontrolled manner. While simple diastereoselection in these reactions is high, delivering anti-products with ≥20:1 selectivity, the organometallic transformation described is compatible with a diverse range of functionality and substrates (including aliphatic and aromatic imines, allylic silanes, trisubstituted alkenes, vinyl- and aryl halides, trifluoromethyl groups, thioethers, and aromatic heterocycles). Alkene geometry of the products is a complex function of the allylic alcohol structure and is consistent with a mechanistic proposal based on syn-carbometalation followed by syn-elimination by way of a boat-like transition state geometry. Single asymmetric coupling reactions provide a means to translate the stereochemical information of the allylic alcohol to the homoallylic amine or to control diastereoselection in the coupling reactions of achiral allylic alcohols with chiral imines. Double asymmetric coupling reactions are also described that afford a unique means to control stereoselection in these complex convergent coupling processes. Finally, empirical models are proposed that are consistent with the observed stereochemical course of these coupling reactions en route to chiral homoallylic amines possessing di- or trisubstituted alkenes and anti- or syn- relative stereochemistry at the allylic and homoallylic positions.  相似文献   

4.
The transition metal-catalyzed allylic substitution with unstabilized carbon nucleophiles represents an important cross-coupling reaction for the construction of ternary carbon stereogenic centers. We have developed a new regio- and enantiospecific rhodium-catalyzed allylic alkylation of acyclic unsymmetrical chiral nonracemic allylic alcohol derivatives with aryl zinc bromides. This study demonstrates that the hydrotris(pyrazolyl)borate rhodium catalyst and zinc(II) halide salt are crucial for efficiency, while the addition of lithium bromide to the catalyst is necessary for obtaining optimal regiospecificity. The stereochemical course of this reaction was established through the synthesis of (S)-ibuprofen, which demonstrated that the alkylation proceeds with net inversion of absolute configuration consistent with direct addition of the nucleophile to the metal center followed by reductive elimination.  相似文献   

5.
The stereochemical course of the singlet-oxygen ene reaction with acyclic olefins may be controlled if in the substrate conformational fixation (1,3-allylic strain) an allyl-ic substituent for interaction with the attacking oxygen enophile aligns. Various substrates were chosen to elucidate the features of the olefin that are necessary to control the sense (threo versus erythro) and the extent of the ii-facial preference of the singlet-oxygen attack. Depending on the electronic properties of the double bond and the nature of the allylic substituent, threo or erythro selectivity may be imposed through hydrogen bonding, electrostatic and steric effects and stereoelectronic alignment. Such directing properties, especially that of the hydroxy group, were also confirmed in the other reaction modes of singlet oxygen, namely the [4+2] cycloaddition to chiral naphthylenic alcohols and the [2+2] cycloaddition to an adamantylidene-substituted allylic alcohol. The syntheses of the natural products Merucathin and Iso-dihydromahubanolide B are two examples in which such stereocontrolled photooxygenations have been used as key steps to build up the required chirality diastereose-lectively.  相似文献   

6.
7.
A two-step reaction sequence to homoallylic nitro compounds from allylic alcohols is presented. Ethoxy carbonylation of the alcohols with ethyl chloroformate provides the corresponding allylic ethyl carbonates in high yields. Exposure of these substrates to catalytic palladium(0) in CH(3)NO(2) initiates a reaction sequence, ionization-decarboxylation-nitromethylation, that culminates with the formation of nitroalkenes. The regio- and stereochemical outcomes of the nitromethyl allylation reaction can be explained by the behavior of the transient pi-allylpalladium complexes. This methodology serves as a centerpiece for the synthesis of an important carbocyclic nucleoside intermediate.  相似文献   

8.
In depth mechanistic studies of iridium catalyzed regioselective and enantioselective allylic substitution reactions are presented. A series of cyclometalated allyliridium complexes that are kinetically and chemically competent to be intermediates in the allylic substitution reactions was prepared and characterized by 1D and 2D NMR spectroscopies and single-crystal X-ray difraction. The rates of epimerization of the less thermodynamically stable diastereomeric allyliridium complexes to the thermodynamically more stable allyliridium stereoisomers were measured. The rates of nucleophilic attack by aniline and by N-methylaniline on the isolated allyliridium complexes were also measured. Attack on the thermodynamically less stable allyliridium complex was found to be orders of magnitude faster than attack on the thermodynamically more stable complex, yet the major enantiomer of the catalytic reaction is formed from the more stable diastereomer. Comparison of the rates of nucleophilic attack to the rates of epimerization of the diastereomeric allyliridium complexes containing a weakly coordinating counterion showed that nucleophilic attack on the less stable allyliridium species is much faster than conversion of the less stable isomer to the more stable isomer. These observations imply that Curtin-Hammett conditions are not met during iridium catalyzed allylic substitution reactions by η(3)-η(1)-η(3) interconversion. Rather, these data imply that when these conditions exist for this reaction, they are created by reversible oxidative addition, and the high selectivity of this oxidative addition step to form the more stable diastereomeric allyl complex leads to the high enantioselectivity. The stereochemical outcome of the individual steps of allylic substitution was assessed by reactions of deuterium-labeled substrates. The allylic substitution was shown to occur by oxidative addition with inversion of configuration, followed by an outer sphere nucleophilic attack that leads to a second inversion of configuration. This result contrasts the changes in configuration that occur during reactions of molybdenum complexes studied with these substrates previously. In short, these studies show that the factors that control the enantioselectivity of iridium-catalyzed allylic substitution are distinct from those that control enantioselectivity during allylic substitution catalyzed by palladium or molybdenum complexes and lead to the unique combination of high regioselectivity, enantioselectivity, and scope of reactive nucleophile.  相似文献   

9.
A nucleophilic N-heterocyclic carbene has been successfully used in a Pd(0)-catalyzed allylic substitution for the first time. It was found that allylic substitution with a soft nucleophile using a Pd-carbene catalyst proceeds via retention of configuration, the stereochemical reaction pathway being the same as that of the reaction using a Pd-phosphine complex. [reaction--see text]  相似文献   

10.
[reaction: see text](-)-Sparteine-mediated lithiation/transmetalation/substitution of N-Boc allylic amines provides anti-configured homoaldol precursors in yields of 38-85% and enantiomeric ratios of 83:17-99:1. Subsequent O-protection and hydrolysis allows access to O-protected homoaldol adducts in good yields. The absolute configurations of the homoaldol products have been assigned by calculation of optical rotations and by X-ray crystallography of derivatives. A stereochemical course of reaction for the lithiation/transmetalation/substitution sequence is proposed.  相似文献   

11.
A catalyst that couples a photoswitch to the biaryl backbone of a chiral bis(phosphine) ligand, thus allowing photochemical manipulation of ligand geometry without perturbing the electronic structure is reported. The changes in catalyst activity and selectivity upon switching can be attributed to intramolecular mechanical forces, thus laying the foundation for a new class of catalysts whose selectivity can be varied smoothly and in situ over a useful range by controlling molecular stress experienced by the catalyst during turnover. Forces on the order of 100 pN are generated, thus leading to measurable changes in the enantioselectivities of asymmetric Heck arylations and Trost allylic alkylations. The differential coupling between applied force and competing stereochemical pathways is quantified and found to be more efficient for the Heck arylations.  相似文献   

12.
The ene reaction of singlet oxygen ((1)O(2)), triazolinedione (TAD), and nitrosoarene, specifically 4-nitronitrosobenzene (ArNO), with the tetrasubstituted 1,3-allylically strained, chiral allylic alcohol 3,4-dimethylpent-3-en-2-ol (2) leads to the threo-configured ene products in high diastereoselectivity, a consequence of the hydroxy-group directivity. Hydrogen bonding favors formation of the threo-configured encounter complex threo-EC in the early stage of ene reaction. For the analogous twix deuterium-labeled allylic alcohol Z-2-d(3), a hitherto unrecognized dichotomy between (1)O(2) and the ArNO and TAD enophiles is disclosed in the regioselectivity of the tetrasubstituted alcohol: Whereas for ArNO and TAD, hydrogen bonding with the allylic hydroxy group dictates the regioselectivity (twix selectivity), for (1)O(2), the cis effect dominates (twin/trix selectivity). From the interdependence between the twix/twin regioselectivity and the threo/erythro diastereoselectivity, it has been recognized that the enophile also attacks the allylic alcohol from the erythro pi face without assistance by hydrogen bonding with the allylic hydroxy functionality.  相似文献   

13.
Chiral α‐amino ketones are excellent nucleophiles for stereoselective palladium‐catalyzed allylic alkylations. Both chiral as well as achiral allylic substrates can be applied, while the stereochemical outcome of the reaction is controlled by the chiral ketone enolate. The substituted amino ketones formed can be reduced stereoselectively, and up to five consecutive stereogenic centers can be obtained. This approach can be used for the synthesis of highly substituted piperidine derivatives.  相似文献   

14.
Treatment of pi-allyltricarbonyliron lactone complexes, that contain an adjacent leaving group, with lithium naphthalenide causes decomplexation to acyclic dienols in excellent yield and without any stereochemical scrambling of the allylic centre. When an endo complex is employed (E,E)-geometry prevails with good selectivity whereas (Z,E)-geometry dominates in the case of exo complexes. A mechanism consistent with the observed stereo- and regiochemistry is proposed.  相似文献   

15.
The combined carbometalation reaction of ynol ethers followed by a zinc homologation and further allylation reactions lead to an efficient preparation of allylic vicinal diols. The stereochemical outcome of the reaction shows that the substituent of the aldehyde occupies a pseudoaxial position in a Zimmerman-Traxler transition state.  相似文献   

16.
The palladium(0)-catalyzed cross-coupling reaction of allylic halides and acetates with indium organometallics is reported. In this synthetic transformation, triorganoindium compounds and tetraorganoindates (aryl, alkenyl, and methyl) react with cinnamyl and geranyl halides and acetates to afford the S(N)2 product regioselectively and in good yield. The reaction proceeds with net inversion of the stereochemical configuration.  相似文献   

17.
An enantioselective synthesis of allylic esters has been achieved by a novel asymmetric alkylation of allylic gem-dicarboxylates. The catalyst derived from palladium(0) and R,R-1,2-di(2'-diphenylphosphinobenzamido)cyclohexene efficiently induced the alkylation process with a variety of nucleophiles to provide allylic esters as products in good yield. High regio- and enantioselectivities were observed in the alkylation with most nucleophiles derived from malonate, whereas a modest level of ee's was obtained in the reactions with less reactive nucleophiles such as bis(phenylsulfonyl)ethane. In the latter case, a slow addition procedure proved effective, leading to significantly improved ee's. The utility of the alkylation products was demonstrated by several synthetically useful transformations including allylic isomerizations, allylic alkylations, and Claisen rearrangements. Using these reactions, the chirality of the initial allylic carbon-oxygen bond could be transferred to new carbon-oxygen, carbon-carbon, or carbon-nitrogen bonds in a predictable fashion with high stereochemical fidelity. The conversion of gem-diesters to chiral esters by the substitution reaction is the equivalent of an asymmetric carbonyl addition by stabilized nucleophiles. In conjunction with the subsequent reactions that occur with high stereospecificity, allylic gem-dicarboxylates serve as synthons for a double allylic transformation.  相似文献   

18.
The stereoselective synthesis of a series of di- and tri-hydroxylated aminocyclohexane derivatives has been developed. A one-pot, two step tandem process involving an Overman rearrangement and a ring closing metathesis reaction has been utilised for the asymmetric synthesis of (1S)-1-(2',2',2'-trichloromethylcarbonylamino)cyclohexa-2-ene. Oxidation of this cyclohexene derivative was then studied leading to the preparation of two diol analogues in excellent stereoselectivity. (1S)-1-(2',2',2'-trichloromethylcarbonylamino)cyclohexa-2-ene was then converted to a novel allylic alcohol via a 4,5-dihydro-1,3-oxazole. Functionalisation of this allylic alcohol by Upjohn dihydroxylation conditions or by a directed epoxidation/hydrolysis sequence of reactions allowed the synthesis of two dihydroconduramines in excellent stereoselectivity. The stereochemical assignment of all compounds prepared was confirmed by NOE experiments or X-ray structure determination.  相似文献   

19.
A novel and efficient approach to allyloxyamines by the allylation of nitrosoarenes with α‐chiral allylboronates is described. C? O bond formation occurs with high stereospecificity and the product allyloxyamines are easily transformed into valuable chiral building blocks such as isoxazolidines and allylic alcohols. The reaction features complete regioselectivity (O‐selectivity), high E/Z selectivity, and excellent chirality transfer.  相似文献   

20.
Iridium complex-catalyzed allylic amination of allylic esters   总被引:1,自引:0,他引:1  
Iridium complex-catalyzed allylic amination of allylic carbonates was studied. The solvent strongly affected the catalytic activity. The use of a polar solvent such as EtOH is essential for obtaining the products in high yield. The reaction of (E)-3-substituted-2-propenyl carbonate and 1-substituted-2-propenyl carbonate with pyrrolidine in the presence of a catalytic amount of [Ir(COD)Cl](2) and P(OPh)(3) (P/Ir = 2) gave a branch amine with up to 99% selectivity. Both secondary and primary amines could be used for this reaction. When a primary amine was used, selective monoallylation occurred. No diallylation product was obtained. The reaction of 1,1-disubstituted-2-propenyl acetate with amines exclusively gave an alpha,alpha-disubstituted allylic amine. This reaction provides an alternative route to the addition of an organometallic reagent to ketimines for the preparation of such amines. The reaction of (Z)-3-substituted-2-propenyl carbonate with amines gave (Z)-linear amines with up to 100% selectivity. In all cases, no (E)-linear amine was obtained. The selectivities described here have not been achieved in similar palladium complex-catalyzed reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号