首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
混沌时间序列重构相空间参数选取研究   总被引:20,自引:0,他引:20       下载免费PDF全文
张淑清  贾健  高敏  韩叙 《物理学报》2010,59(3):1576-1582
基于重构相空间的延迟时间和嵌入维数这两个参数的选取不相关的观点,提出用互信息函数法确定延迟时间后,用CAO方法来确定嵌入维数的新思路.通过对几种典型的混沌动力学系统的数值验证,结果表明该方案能够确定出相空间重构的有效延迟时间和最佳嵌入维数.该方法能够从时间序列中有效地重构原系统的相空间,是混沌信号识别的一种有效途径.  相似文献   

2.
陈帝伊  柳烨  马孝义 《物理学报》2012,61(10):100501-100501
鉴于径向基函数(RBF)神经网络模型在非线性预测方面的优良性能, 提出了利用该预测模型对混沌时间序列相空间重构的两个关键参数——延迟时间和嵌入维数进行联合估计的方法, 并以客观的评价指标为依据给出其最优估计值. 以Lorenz系统为例进行数值分析, 得到RBF单步及多步预测模型中嵌入维数和延迟时间的最佳参数估计值, 并在原模型中对估计值进行校验. 结果表明, 该方法可以有效地估计出嵌入维数和延迟时间, 从而显著提高预测精度.  相似文献   

3.
基于条件熵扩维的多变量混沌时间序列相空间重构   总被引:1,自引:0,他引:1       下载免费PDF全文
张春涛  马千里  彭宏  姜友谊 《物理学报》2011,60(2):20508-020508
提出一种多变量混沌时间序列相空间重构的条件熵扩维方法.首先使用互信息法求解每个变量的时间延迟,其次按条件熵最大原则逐步扩展相空间的嵌入维数,使得重构坐标从低维到高维的转换保持较强的独立性,最终的重构相空间具有较低的冗余度,为多变量时间序列的预测构造了有效的模型输入向量.通过对几个经典多变量混沌时间序列进行数值实验,结果表明该方法比单变量预测和已有多变量预测方法具有更好的预测效果,说明了该重构方法的有效性. 关键词: 多变量混沌时间序列 相空间重构 条件熵 神经网络预测  相似文献   

4.
基于EMD方法的混沌时间序列预测   总被引:4,自引:0,他引:4       下载免费PDF全文
将经验模态分解(EMD)方法引入到非线性数据处理中,提出用EMD分解后的数据进行混沌预测的方法.通过Duffing方程和Lorenz系统的非线性响应预测实例表明,EMD分解后的信号和原始信号相比具有较小的最大Lyapunov指数,可提高预测时间和长时预测精度. 关键词: EMD 混沌 预测  相似文献   

5.
混沌动力系统小波变换模数的关联维数   总被引:3,自引:0,他引:3       下载免费PDF全文
刘海峰  代正华  陈峰  龚欣  于遵宏 《物理学报》2002,51(6):1186-1192
关联维数是描述动力系统混沌的重要参数.在仿真计算的基础上,发现尽管小尺度小波变换时,奇异吸引子的整体形状发生了改变,但小波变换模数的关联维数与动力系统本身是一致的.同时仿真计算还表明,随尺度的增加,关联积分与距离的标度关系逐渐变差,但在一定范围内仍可较准确地计算出关联维数. 关键词: 混沌 关联维数 小波分析 尺度 相空间  相似文献   

6.
提出了一种局域离散余弦变换(DCT)域Volterra预测,并用于混沌时间序列预测。DCT被用来减少Volterra预测器的矩阵计算复杂性。数值仿真结果表明:本文提出的方法比传统的局域线性预测方法能更有效地预测混沌时间序列和预测精度。  相似文献   

7.
一种预测混沌时间序列的模糊神经网络方法   总被引:6,自引:0,他引:6       下载免费PDF全文
胡玉霞  高金峰 《物理学报》2005,54(11):5034-5038
给出了一种预测混沌时间序列的模糊神经网络及其学习方法,给出的方法能直接从数据中提取模糊规则,经过优化得到最佳模糊规则库,并利用神经网络的自学习功能修改隶属函数的参数和网络的权值,减少了规则的匹配过程,加快了推理速度,增强了网络的自适应能力. 使用该神经网络及其学习方法对Lorenz混沌时间序列进行了预测仿真研究,试验结果表明给出的预测工具和方法是有效的. 关键词: 模糊神经网络 模糊规则提取 混沌时间序列预测  相似文献   

8.
基于模糊边界模块化神经网络的混沌时间序列预测   总被引:3,自引:0,他引:3       下载免费PDF全文
马千里  郑启伦  彭宏  覃姜维 《物理学报》2009,58(3):1410-1419
提出一种模糊边界模块化神经网络(FBMNN)的混沌时间序列预测方法,该方法先对混沌时间序列观测点重构的相空间进行模块化划分,划分点的选取由遗传算法自动寻优.然后定义一个模糊隶属度函数,在划分边界一侧按照一定的模糊隶属度设定模糊边界带,通过模糊化处理,解决了各模块划分点附近预测结果的跳跃问题.最后每一模块,及其模糊边界的样本点都对应一个递归神经网络进行训练,通过预测合成模块输出结果.该方法对三个混沌时间序列基准数据集Mackey-Glass,Lorenz,Henon进行实验,结果表明该方法有效地提高了混沌时间序列预测效果. 关键词: 模糊边界 模块化神经网络 混沌时间序列 预测  相似文献   

9.
变参数混沌时间序列的神经网络预测研究   总被引:7,自引:0,他引:7       下载免费PDF全文
王永生  孙瑾  王昌金  范洪达 《物理学报》2008,57(10):6120-6131
研究一类复杂变参数混沌系统时间序列的预测问题.首先构造一个变参数Logistic映射,分析变参数混沌系统的特点,指出动力学特征不断变化的这类系统不存在恒定形状的吸引子;结合Takens嵌入定理和神经网络理论,阐述神经网络方法预测具有恒定吸引子形状的混沌系统可行的原因,分析研究其用于预测变参数混沌系统的潜在问题.变参数Ikeda系统的神经网络预测试验验证了理论分析结果,试验还表明,简单增大预测训练样本数可能降低泛化预测精度,训练集的选择对这类系统的泛化预测效果影响极大,指出混沌时间序列预测实用化必须研究解决这类变参数混沌系统的预测. 关键词: 混沌 预测 神经网络 变参数系统  相似文献   

10.
李瑞国  张宏立  范文慧  王雅 《物理学报》2015,64(20):200506-200506
针对传统预测模型对混沌时间序列预测精度低、收敛速度慢及模型结构复杂的问题, 提出了基于改进教学优化算法的Hermite正交基神经网络预测模型. 首先, 将自相关法和Cao方法相结合对混沌时间序列进行相空间重构, 以获得重构延迟时间向量; 其次, 以Hermite正交基函数为激励函数构成Hermite正交基神经网络, 作为预测模型; 最后, 将模型参数优化问题转化为多维空间上的函数优化问题, 利用改进教学优化算法对预测模型进行参数优化, 以建立预测模型并进行预测分析. 分别以Lorenz 系统和Liu系统为模型, 通过四阶Runge-Kutta法产生混沌时间序列作为仿真对象, 并进行单步及多步预测对比实验. 仿真结果表明, 与径向基函数神经网络、回声状态网络、最小二乘支持向量机及基于教学优化算法的Hermite正交基神经网络预测模型相比, 所提预测模型具有更高的预测精度、更快的收敛速度和更简单的模型结构, 验证了该模型的高效性, 便于推广和应用.  相似文献   

11.
卞春华  宁新宝 《中国物理》2004,13(5):633-636
Determining the embedding dimension of nonlinear time series plays an important role in the reconstruction of nonlinear dynamics. The paper first summarizes the current methods for determining the embedding dimension. Then, inspired by the fact that the optimum modelling dimension of nonlinear autoregressive (NAR) prediction model can characterize the embedding feature of the dynamics, the paper presents a new idea that the optimum modelling dimension of the NAR model can be taken as the minimum embedding dimension. Some validation examples and results are given and the present method shows its advantage for short data series.  相似文献   

12.
Determining the input dimension of a feed-forward neural network for nonlinear time series prediction plays an important role in the modelling.The paper first summarizes the current methods for determining the input dimension of the neural network.Then inspired by the fact that the correlation dimension of a nonlinear dynamic system is the most important feature of it ,the paper pressents a new idea that the input dimension of the neural network for nonlinear time series prediction can be taken as an integer just greater than or equal to the correlation dimension.Fimally,some validation examples and results are given.  相似文献   

13.
孟庆芳  彭玉华  薛佩军 《中国物理》2007,16(5):1252-1257
A new method is proposed to determine the optimal embedding dimension from a scalar time series in this paper. This method determines the optimal embedding dimension by optimizing the nonlinear autoregressive prediction model parameterized by the embedding dimension and the nonlinear degree. Simulation results show the effectiveness of this method. And this method is applicable to a short time series, stable to noise, computationally efficient, and without any purposely introduced parameters.  相似文献   

14.
李军  刘君华 《物理学报》2005,54(10):4569-4577
提出了一种新颖的广义径向基函数神经网络模型,其径向基函数(RBF)的形式由生成函数确定.然后,给出了易实现的梯度学习算法,同时为了进一步提高网络的收敛速度和网络性能,又给出了基于卡尔曼滤波的动态学习算法.为了验证网络的学习性能,采用基于卡尔曼滤波算法的新型广义RBF网络预测模型对Mackey-Glass混沌时间序列和Henon映射进行了仿真.结果表明,所提出的新型广义RBF神经网络模型能快速、精确地预测混沌时间序列,是研究复杂非线性动力系统辨识和控制的一种有效方法. 关键词: 广义径向基函数神经网络 卡尔曼滤波 梯度下降学习算法 混沌时间序列 预测  相似文献   

15.
魏德志  陈福集  郑小雪 《物理学报》2015,64(11):110503-110503
网络舆情发展趋势具有混沌系统的特征, 提出一种基于EMPSO-RBF神经网络的方法对网络舆情的发展趋势进行预测. 首先根据Lyapunov指数证明网络舆情具备混沌的特征, 然后对网络舆情时间序列数据进行相空间重构, 最后采用EMPSO-RBF方法进行预测, 并和其他模型进行对比试验, 实验结果表明EMPSO-RBF方法具有较高精确度.  相似文献   

16.
伍雪冬  王耀南  刘维亭  朱志宇 《中国物理 B》2011,20(6):69201-069201
On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random interruption failures in the observation based on the extended Kalman filtering (EKF) and the unscented Kalman filtering (UKF), which were shortened as GEKF and GUKF in this paper, respectively. Then the nonlinear filtering model is established by using the radial basis function neural network (RBFNN) prototypes and the network weights as state equation and the output of RBFNN to present the observation equation. Finally, we take the filtering problem under missing observed data as a special case of nonlinear filtering with random intermittent failures by setting each missing data to be zero without needing to pre-estimate the missing data, and use the GEKF-based RBFNN and the GUKF-based RBFNN to predict the ground radioactivity time series with missing data. Experimental results demonstrate that the prediction results of GUKF-based RBFNN accord well with the real ground radioactivity time series while the prediction results of GEKF-based RBFNN are divergent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号