共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
鉴于径向基函数(RBF)神经网络模型在非线性预测方面的优良性能, 提出了利用该预测模型对混沌时间序列相空间重构的两个关键参数——延迟时间和嵌入维数进行联合估计的方法, 并以客观的评价指标为依据给出其最优估计值. 以Lorenz系统为例进行数值分析, 得到RBF单步及多步预测模型中嵌入维数和延迟时间的最佳参数估计值, 并在原模型中对估计值进行校验. 结果表明, 该方法可以有效地估计出嵌入维数和延迟时间, 从而显著提高预测精度. 相似文献
3.
提出一种多变量混沌时间序列相空间重构的条件熵扩维方法.首先使用互信息法求解每个变量的时间延迟,其次按条件熵最大原则逐步扩展相空间的嵌入维数,使得重构坐标从低维到高维的转换保持较强的独立性,最终的重构相空间具有较低的冗余度,为多变量时间序列的预测构造了有效的模型输入向量.通过对几个经典多变量混沌时间序列进行数值实验,结果表明该方法比单变量预测和已有多变量预测方法具有更好的预测效果,说明了该重构方法的有效性.
关键词:
多变量混沌时间序列
相空间重构
条件熵
神经网络预测 相似文献
4.
5.
6.
7.
8.
提出一种模糊边界模块化神经网络(FBMNN)的混沌时间序列预测方法,该方法先对混沌时间序列观测点重构的相空间进行模块化划分,划分点的选取由遗传算法自动寻优.然后定义一个模糊隶属度函数,在划分边界一侧按照一定的模糊隶属度设定模糊边界带,通过模糊化处理,解决了各模块划分点附近预测结果的跳跃问题.最后每一模块,及其模糊边界的样本点都对应一个递归神经网络进行训练,通过预测合成模块输出结果.该方法对三个混沌时间序列基准数据集Mackey-Glass,Lorenz,Henon进行实验,结果表明该方法有效地提高了混沌时间序列预测效果.
关键词:
模糊边界
模块化神经网络
混沌时间序列
预测 相似文献
9.
研究一类复杂变参数混沌系统时间序列的预测问题.首先构造一个变参数Logistic映射,分析变参数混沌系统的特点,指出动力学特征不断变化的这类系统不存在恒定形状的吸引子;结合Takens嵌入定理和神经网络理论,阐述神经网络方法预测具有恒定吸引子形状的混沌系统可行的原因,分析研究其用于预测变参数混沌系统的潜在问题.变参数Ikeda系统的神经网络预测试验验证了理论分析结果,试验还表明,简单增大预测训练样本数可能降低泛化预测精度,训练集的选择对这类系统的泛化预测效果影响极大,指出混沌时间序列预测实用化必须研究解决这类变参数混沌系统的预测.
关键词:
混沌
预测
神经网络
变参数系统 相似文献
10.
针对传统预测模型对混沌时间序列预测精度低、收敛速度慢及模型结构复杂的问题, 提出了基于改进教学优化算法的Hermite正交基神经网络预测模型. 首先, 将自相关法和Cao方法相结合对混沌时间序列进行相空间重构, 以获得重构延迟时间向量; 其次, 以Hermite正交基函数为激励函数构成Hermite正交基神经网络, 作为预测模型; 最后, 将模型参数优化问题转化为多维空间上的函数优化问题, 利用改进教学优化算法对预测模型进行参数优化, 以建立预测模型并进行预测分析. 分别以Lorenz 系统和Liu系统为模型, 通过四阶Runge-Kutta法产生混沌时间序列作为仿真对象, 并进行单步及多步预测对比实验. 仿真结果表明, 与径向基函数神经网络、回声状态网络、最小二乘支持向量机及基于教学优化算法的Hermite正交基神经网络预测模型相比, 所提预测模型具有更高的预测精度、更快的收敛速度和更简单的模型结构, 验证了该模型的高效性, 便于推广和应用. 相似文献
11.
Determining the minimum embedding dimension of nonlinear time series based on prediction method 总被引:1,自引:0,他引:1 下载免费PDF全文
Determining the embedding dimension of nonlinear time series plays an important role in the reconstruction of nonlinear dynamics. The paper first summarizes the current methods for determining the embedding dimension. Then, inspired by the fact that the optimum modelling dimension of nonlinear autoregressive (NAR) prediction model can characterize the embedding feature of the dynamics, the paper presents a new idea that the optimum modelling dimension of the NAR model can be taken as the minimum embedding dimension. Some validation examples and results are given and the present method shows its advantage for short data series. 相似文献
12.
Determining the input dimension of a neural network for nonlinear time series prediction 总被引:6,自引:0,他引:6 下载免费PDF全文
Determining the input dimension of a feed-forward neural network for nonlinear time series prediction plays an important role in the modelling.The paper first summarizes the current methods for determining the input dimension of the neural network.Then inspired by the fact that the correlation dimension of a nonlinear dynamic system is the most important feature of it ,the paper pressents a new idea that the input dimension of the neural network for nonlinear time series prediction can be taken as an integer just greater than or equal to the correlation dimension.Fimally,some validation examples and results are given. 相似文献
13.
A new method is proposed to determine the optimal embedding
dimension from a scalar time series in this paper. This method
determines the optimal embedding dimension by optimizing the
nonlinear autoregressive prediction model parameterized by the
embedding dimension and the nonlinear degree. Simulation results
show the effectiveness of this method. And this method is applicable
to a short time series, stable to noise, computationally efficient,
and without any purposely introduced parameters. 相似文献
14.
提出了一种新颖的广义径向基函数神经网络模型,其径向基函数(RBF)的形式由生成函数确定.然后,给出了易实现的梯度学习算法,同时为了进一步提高网络的收敛速度和网络性能,又给出了基于卡尔曼滤波的动态学习算法.为了验证网络的学习性能,采用基于卡尔曼滤波算法的新型广义RBF网络预测模型对Mackey-Glass混沌时间序列和Henon映射进行了仿真.结果表明,所提出的新型广义RBF神经网络模型能快速、精确地预测混沌时间序列,是研究复杂非线性动力系统辨识和控制的一种有效方法.
关键词:
广义径向基函数神经网络
卡尔曼滤波
梯度下降学习算法
混沌时间序列
预测 相似文献
15.
16.
Generalized unscented Kalman filtering based radial basis function neural network for the prediction of ground radioactivity time series with missing data 下载免费PDF全文
On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random interruption failures in the observation based on the extended Kalman filtering (EKF) and the unscented Kalman filtering (UKF), which were shortened as GEKF and GUKF in this paper, respectively. Then the nonlinear filtering model is established by using the radial basis function neural network (RBFNN) prototypes and the network weights as state equation and the output of RBFNN to present the observation equation. Finally, we take the filtering problem under missing observed data as a special case of nonlinear filtering with random intermittent failures by setting each missing data to be zero without needing to pre-estimate the missing data, and use the GEKF-based RBFNN and the GUKF-based RBFNN to predict the ground radioactivity time series with missing data. Experimental results demonstrate that the prediction results of GUKF-based RBFNN accord well with the real ground radioactivity time series while the prediction results of GEKF-based RBFNN are divergent. 相似文献