首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultimate strength of resistance spot welded joints fabricated from a wide range of steel grades, weld button size, and sheet thickness are reported for lap-shear and cross-tension specimens subjected to quasi-static and impact loading conditions. Test data are analyzed with respect to energy, impact speed, and loading rate. Loading rate is identified as a critical, test system independent parameter to reflect the strain rate sensitivity of the steels. An equation is fitted to the ultimate strength test data as a function of loading rate which is proposed to predict the separation of spot welded joint under dynamic loading. The model is validated by test data from open literature generated from other type of specimens and/or dynamic test conditions.  相似文献   

2.
The two-part series of papers presents the results of a study of the crushing behavior of open-cell Al foams under impact. In Part I, direct and stationary impact tests are performed on cylindrical foam specimens at impacts speeds in the range of 20–160 m/s using a gas gun. The stress at one end is recorded using a pressure bar, while the deformation of the entire foam specimen is monitored with high-speed photography. Specimens impacted at velocities of 60 m/s and above developed nearly planar shocks that propagated at well-defined velocities crushing the specimen. The shock speed vs. impact speed, and the strain behind the shock vs. impact speed representations of the Hugoniot were both extracted directly from the high-speed images. The former follows a linear relationship and the latter asymptotically approaches a strain of about 90% at higher velocities. The Hugoniot enables calculation of all problem variables without resorting to an assumed constitutive model. The compaction energy dissipation across the shock is shown to increase with impact velocity and to be significantly greater than the corresponding quasi-static value. Specimens impacted at velocities lower than 40 m/s exhibited response and deformation patterns that are very similar to those observed under quasi-static crushing. Apparently, in this impact speed regime inertia increases the energy absorption capacity very modestly.  相似文献   

3.
The in-plane compression and crushing of honeycombs is known to be closely related to the crushing behavior of the broader class of space filling cellular solids. Previously, the authors conducted an extensive study of uniaxial crushing of a polycarbonate honeycomb with circular cells. In this paper the same honeycomb is crushed biaxially. The crushing was performed in a custom testing facility between rigid platens which can be moved independently in two orthogonal directions. The facility allows testing at various biaxiality ratios and volume reductions as high as 95%. The facility was used to conduct several series of biaxial crushing experiments on nearly square honeycomb specimens (18×21 cells) . In each experiment we recorded the true stress–displacement responses in the x- and y-directions as well as full field views of the deformation using a video camera. Biaxial crushing is quite complex and the prevalent mechanisms of collapse depend on the biaxiality ratio (γ) . As is the case in uniaxial crushing, the onset of collapse involves localized instabilities, however, the extent of localized deformation varies with γ. The energy absorption capacity of the material depends on γ. The highest energy is required when the specimen is crushed at the same rates in the two directions.  相似文献   

4.
Part II of this study uses micromechanically accurate foam models to simulate and study the dynamic crushing of open-cell foams. The model starts as random soap froth generated using the Surface Evolver software to mimic the microstructure of the foams tested. The linear edges of the cellular microstructure are “dressed” with appropriate distributions of solid to match those of ligaments in the actual foams and their relative density. The ligaments are modeled as shear-deformable beams with variable cross sections discretized with beam elements in LS-DYNA, while the Al-alloy is modeled as a finitely deforming elastic–plastic material. The numerical contact algorithm of the code is used to model ligament contact and limit localized cell crushing. The quasi-static and all dynamic crushing experiments in Part I are simulated numerically. The models are shown to reproduce all aspects of the crushing behavior including the formation and evolution of nearly planar shocks, the force acting at the two ends, the shock front velocity, the strain in the crushed material behind the shock, and the energy absorbed.  相似文献   

5.
In several practical applications hot-finished steel pipe that exhibits Lüders bands is bent to strains of 2–3%. Lüders banding is a material instability that leads to inhomogeneous plastic deformation in the range of 1–4%. This work investigates the influence of Lüders banding on the inelastic response and stability of tubes under rotation controlled pure bending. Part I presents the results of an experimental study involving tubes of several diameter-to-thickness ratios in the range of 33.2–14.7 and Lüders strains of 1.8–2.7%. In all cases the initial elastic regime terminates at a local moment maximum and the local nucleation of narrow angled Lüders bands of higher strain on the tension and compression sides of the tube. As the rotation continues the bands multiply and spread axially causing the affected zone to bend to a higher curvature while the rest of the tube is still at the curvature corresponding to the initial moment maximum. With further rotation of the ends the higher curvature zone(s) gradually spreads while the moment remains essentially unchanged. For relatively low D/t tubes and/or short Lüders strains, the whole tube eventually is deformed to the higher curvature entering the usual hardening regime. Subsequently it continues to deform uniformly until the usual limit moment instability is reached. For high D/t tubes and/or materials with longer Lüders strains, the propagation of the larger curvature is interrupted by collapse when a critical length is Lüders deformed leaving behind part of the structure essentially undeformed. The higher the D/t and/or the longer the Lüders strain is, the shorter the critical length. Part II presents a numerical modeling framework for simulating this behavior.  相似文献   

6.
A new yield criterion is proposed for transversely isotropic solid foams. Its derivation is based on the hypothesis that the yielding in foams is driven by the total strain energy density, rather than a completely phenomenological approach. This allows defining the yield surface with minimal number of parameters and does not require complex experiments. The general framework used leads to the introduction of new scalar measures of stress and strain (characteristic stress and strain) for transversely isotropic foams. Furthermore, the central hypothesis that the total strain energy density drives yielding in foams ascribes to the characteristic stress an analogous role of von Mises stress in metal plasticity. Unlike the overwhelming majority of yield models in literature the proposed model recognizes the tension–compression difference in yield behavior of foams through a linear mean stress term. Predictions of the proposed yield model are in excellent agreement with the results of uniaxial, biaxial and triaxial FE analyses implemented on both isotropic and transversely isotropic Kelvin foam models.  相似文献   

7.
Ductile failure experiments on a double notched tube (DNT) specimen subjected to a combination of tensile load and torque that was applied at a fixed ratio is presented. The experimental results extend those in Barsoum and Faleskog (2007a) down to zero stress triaxiality. A new and robust evaluation procedure for such tests is proposed, and a simple relation for the equivalent plastic strain at failure for combined normal and shear deformation, respectively, is developed. Tests were carried out on the medium strength medium hardening steel Weldox 420, and the high strength low hardening steel Weldox 960. The experimental results unanimously show that ductile failure not only depends on stress triaxiality, but is also strongly affected by the type of deviatoric stress state that prevails, which can be quantified by a stress invariant that discriminates between axisymmetric stressing and shear dominated stressing, e.g., the Lode parameter. Additional experiments on round notch bar (RNB) specimens are recapitulated in order to give a comprehensive account on how ductile failure depends on stress triaxiality, ranging from zero to more than 1.6, and the type of stress state for the two materials tested. This provides an extensive experimental data base that will be used to explore an extension of the Gurson model that incorporates damage development in shear presented in Xue et al. (2013) (Part II).  相似文献   

8.
Transmission photoelasticity on scale models is shown to disclose the stress distribution within dry masonry walls. This distribution is found to be complicated by unilateral joints between elements, where ‘randomness constrained within a geometrical scheme’ of contact points occurs, so that stress percolation results highly localized, evidencing ‘unloading islands’ in a ‘stress stream’. These findings are theoretically explained in Part II of this paper from both micromechanical and continuous modelling perspectives.  相似文献   

9.
The screen surface load (SSL) caused by granular materials is an important factor affecting the structural performance of vibrating screen. Based on virtual experiment, a multi-objective collaborative optimization method is proposed to control the SSL under high screening efficiency (SE) in this work. Firstly, a DEM model was established to study the influence of process parameters on SE and SSL. Secondly, the NSGA-II (Non-dominated Sorting Genetic Algorithm) was employed to optimize the screening parameters with both SE and SSL as targets. The optimization method proves to be effective implementing on a linear vibrating screening. With SE equals to 98.5%, the SSL optimizable range is 39.2%. While compromising the SE to 88.7%, the SSL optimizable range improves to 48.6%. The result shows that the collaborative optimization could effectively control the SSL while maintaining a high SE, which is of great significance to improve the service life of screen surface and screen body.  相似文献   

10.
The in-plane biaxial crushing experiments on polycarbonate honeycomb presented in Part I are simulated using large scale finite element models. The models account for nonlinearities in geometry and due to contact while the polycarbonate is modeled as an elastic-powerlaw viscoplastic solid. Full-scale simulations of the uniaxial crushing of this honeycomb were shown in the past to reproduce experiments with accuracy. In biaxial crushing, it was not practical to model specimens the same size as those in the experiments due to computational limitations; instead, a smaller model with 10×11 cells was adopted. Results from simulations of seven of the crushing experiments in Part I with various biaxiality ratios are presented. Through parametric studies it is demonstrated that the size of the specimen and friction between the specimen and the loading surfaces affect the initial elastic parts of the stress–displacement responses and the onset of instability. By contrast, for average crushing strains higher than approximately 10%, their effect was relatively small and the calculated responses were in good agreement with the experimental ones. As a consequence, the energy absorption capacity was predicted to good accuracy for all biaxiality ratios. In addition, many of the modes of cell collapse seen in the experiment are reproduced in the simulations.  相似文献   

11.
12.
The dynamic stiffness of a chemically and physically ageing rubber vibration isolator in the audible frequency range is modelled as a function of ageing temperature, ageing time, actual temperature, time, frequency and isolator dimension. In particular, the dynamic stiffness for an axially symmetric, homogeneously aged rubber vibration isolator is derived by waveguides where the eigenmodes given by the dispersion relation for an infinite cylinder satisfying traction free radial surface boundary condition are matched to satisfy the displacement boundary conditions at the lateral surface ends of the finite rubber cylinder. The constitutive equations are derived in a companion paper (Part 1). The dynamic stiffness is calculated over the whole audible frequency range 20–20,000 Hz at several physical ageing times for a temperature history starting at thermodynamic equilibrium at \(+25\,^{\circ }\hbox {C}\) and exposed by a sudden temperature step down to \(-60\,^{\circ }\hbox {C}\) and at several chemical ageing times at temperature \(+25\,^{\circ }\hbox {C}\) with simultaneous molecular network scission and reformation. The dynamic stiffness results are displaying a strong frequency dependence at a short physical ageing time, showing stiffness magnitude peaks and troughs, and a strong physical ageing time dependence, showing a large stiffness magnitude increase with the increased physical ageing time, while the peaks and troughs are smoothed out. Likewise, stiffness magnitude peaks and troughs are frequency-shifted with increased chemical ageing time. The developed model is possible to apply for dynamic stiffness prediction of rubber vibration isolator over a broad audible frequency range under realistic environmental condition of chemical ageing, mainly attributed to oxygen exposure from outside and of physical ageing, primarily perceived at low-temperature steps.  相似文献   

13.
Recently, Wineman and Rajagopal [1990] “On a Constitutive Theory for Materials Undergoing Microstructural Changes,” Arch. Mech., 42, 53 and Rajagopal and Wineman [1992] “A Constitutive Equation for Nonlinear Solids which Undergo Deformation Induced Microstructural Changes,” Int. J. Plasticity, 8, 385, developed a theory that was particularly well suited to describing the inelastic behavior of polymeric materials. Here, we draw upon their ideas and generalize them to include a much larger class of materials. The versatility and efficacy of the theory are illustrated by studying the problem of twinning within the context of the theory. We find that the predictions of the theory are remarkably close — both qualitatively and quantitatively — with the experimental results of Madhava et al. [1972] “Discontinuous Twinning during Essentially Elastic Compression of Steel at 4.2K,” Phil. Mag., 25(2), 519 and Madhava and Armstrong [1974] “A Constitutive Relation for Deformation Twinning at High Strain Rates,” in Rohde, R.W., Butcher, B.M., Holland, J.R., and Karnes, C.H., eds., Metallurgical Effects at High Strain Rates. Plenum, New York, 1974.  相似文献   

14.
One-dimensional edge debonding of layerwise step-tapered patches from both flat and cylindrical structures is examined. The problems are approach from a unified point of view, as propagating boundary problems in the calculus of variations, with the models for both flat and curved structures being formulated simultaneously. The effects of a contact zone adjacent to the bonded region are incorporated as is the phenomenon of edge-point contact. The formulation results in a selfconsistent representation of the various intact and debonded segments of the composite structure comprised of a multilayer patch and a base structure. It concurrently yields the conditions which establish the locations of the propagating boundary of the bonded (intact) region, and the propagating boundary of the contact zone. The former condition yields the selfconsistent and physically interpretable expressions for the corresponding energy release rates for debonding. The conditions governing edge-point contact are likewise established. Three types of loading conditions are considered : (i) in-plane/circumferential tension, (ii) three-point transverse loading, and (iii) applied transverse (internal ) pressure. It is shown analytically, within the context of the mathematical models employed for both flat and curved structures, that of the loading types considered the third admits a contact zone for certain common conditions of the supports. Results of numerical simulations, based on analytical solutions, pertaining to the test configurations of flat structures subjected to applied in-plane tension and three-point transverse loading are presented for various taper angles and compared.  相似文献   

15.
In general, finite plastic deformation is accompanied by microstructural material property changes such as texture change and growth of localized slip bands. However, it is very difficult to evaluate these microstructural material property changes nondestructively by means of the usual methods used to date. The ultrasonic nondestructive evaluation method proposed by the author has been successfully applied to the evaluation of plastically deformed state. The purpose of the present paper is to formulate precisely a generalized acoustoelastic theory for plastically deformed solids with finite plastic deformation and, moreover, to provide a method of nondestructive evaluation of the plastically deformed state, i.e. yield surface, texture change and the occurrence of the instability associated with the microslip band.  相似文献   

16.
A micromechanical model of the early fatigue damage initiation is proposed based on the slip theory. For each slip system, a local micro-damage variable is introduced to describe globally all phenomena related to the level lower than the crystallographic slip system, such as dislocations, atoms, molecules, lattice defects, etc., of FCC polycrystalline materials. This transgranular damage variable is fully coupled with micro inelastic constitutive equations. It is supposed that the local damage appears when the dislocation density reaches some critical values. The obtained model is devoted to describing the cyclic behavior of metallic materials under proportional and non-proportional loading paths neglecting the quasi-unilateral effect as well as the localization of the fatigue damage on the free surface of the specimen.  相似文献   

17.
In recent years there has been an increasing interest in the control of boundary-layer transition through the use of wall suction. In the current work suction is provided through one or more suction panels situated close to the leading edge of a plate. Experiments show that boundary-layer pressure fluctuation measurements can be used to identify the position of transition. Transition can be maintained at a desired location with minimum power consumption by employing an automatic adaptive feedback control loop which regulates the suction flow rates of two independent suction panels. This can be expressed as a constrained optimization problem. To allow the suction flow rates to be updated, a modified least mean squares algorithm is used within the control loop. Experimental measurements show that the control algorithm allows fast and stable convergence towards the optimum suction distribution for a double suction panel configuration. Numerical simulations have also been performed. The two-dimensional boundary layer was calculated allowing the viscous boundary layer to interact with the inviscid outer flow. Following linear stability theory the spatial growth rates are calculated by solving an Orr-Sommerfeld type eigenvalue problem, with the streamwise location of transition predicted via thee N -method. Applying the same optimization strategy as in the experiments, good qualitative agreement between computations and experiments was found. The optimization algorithm has been applied to computer models where the relation between suction flow rates and transition location is described by an empirical analytical function. This shows that the controller can in principle be applied to systems with more than two suction panels.Nomenclature b transition location with zero suction - d desired transition location - e(k) error signal - k iteration index - p rms pressure - p ref reference rms pressure - r sum of the reference pressure - u streamwise velocity - u e external velocity - inviscid external velocity - A wave amplitude - F( ) cost function - I identity matrix - N maximum amplification factor - P projection matrix - R Reynolds number - Re Reynolds number based on the boundary-layer thickness - R matrix of weights - Tu turbulence level - vector of suction flow rates - v normal velocity - v wall suction velocity at the surface - x streamwise coordinates - x m microphone location - x T(k) measured transition location - y normal coordinate - y(k) sum of the measured pressures - w(k) noise - plate length - r +i i - free stream velocity - * displacement thickness - gradient vector - Lagrange multiplier - controller gain - disturbance stream function - disturbance amplitude - wave frequency = complex wave number  相似文献   

18.
19.
This paper presents a new displacement-based one-dimensional model for the analysis of multilayered composite beams. The kinematic restriction of cross sections rigid in their own planes is introduced. The axial displacements over the cross sections are represented in terms of explicitly defined piecewise polynomial warping functions with discontinuous derivatives at the interlaminae, whereas the amplitude of the displacements along the beam axis is established by means of a variational formulation. It is proved that the proposed representation of the axial displacements yields the exact solution of the interior domain problem for a beam subjected to a transverse load varying according to a polynomial law. It is shown that two or three coordinate functions are sufficient to yield continuous distributions of equilibrated stresses except for small neighborhoods of the constrained cross sections, where a higher number of warping functions could be used in order to obtain a better accuracy. The numerical results show excellent agreement with plane stress finite element and plane strain exact solutions.
Sommario In questo lavoro viene presentato un nuovo modello monodimensionale per l'analisi di travi composite multistrato. Viene introdotta l'ipotesi di indeformabilita delle sezioni nel proprio piano mentre gli spostamenti assiali nella sezione sono rappresentati facendo uso di funzioni ingobbamento definite sull'intera altezza e con derivata discontinua all'in erlamina. Infine, l'ampiezza degli spostamenti lungo l'asse della trave è determinata facendo uso di una formulazione variazionale. Si mostra come la rappresentazione degli spostamenti assiali proposta sia in grado di fornire la soluzione esatta, all'interno del dominio, per una trave soggetta ad un carico trasversale variabile con legge nolinomiale. Due o tre funzioni coordinate sono sufficienti a fornire distribuzioni di sforzi che verificano l'equilibrio anche all'interlamina, a meno di zone rislrette in vicinanza di sezioni vincolate. I risultati numerici mostrano un eccellente accordo con soluzioni agli elementi finiti in stato piano di tensione e con soluzioni esatte in stato piano di deformazione.
  相似文献   

20.
A robust understanding and modeling of the yield behavior in solid foams under complex stress states is essential to design and analysis of optimal structures using these lightweight materials. In pursuit of this objective a new custom-built Multi-Axial Testing Apparatus (MATA) is developed to probe the yield surface of transversely isotropic Divinycell H-100 PVC foam under a multitude of uniaxial, biaxial and triaxial strain paths. Experimental yield data produced constitutes the most comprehensive data set ever produced for any foam as it covers the entire spectrum of stress paths from hydrostatic compression to hydrostatic tension. Experimental results reveal that yielding in foams exhibits not only a quadratic pressure dependence, which is widely recognized in literature, but also a significant linear pressure dependence, which has been largely overlooked in previous studies. A new energy-based yield criterion developed for transversely isotropic foams is also validated using the experimental yield data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号