首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of the development of instability of the free surface of liquid helium, which is charged by electrons localized above it, is studied. It is shown that, if the charge completely screens the electric field above the surface and its magnitude is much larger than the instability threshold, the asymptotic behavior of the system can be described by the well-known 3D Laplacian growth equations. The integrability of these equations in 2D geometry makes it possible to describe the evolution of the surface up to the formation of singularities, viz., cuspidal point at which the electric field strength, the velocity of the liquid, and the curvature of its surface assume infinitely large values. The exact solutions obtained for the problem of the electrocapillary wave profile at the boundary of liquid helium indicate the tendency to a change in the surface topology as a result of formation of charged bubbles.  相似文献   

2.
It is shown that the analytical estimator for the boundary layer thickness that contains the wave frequency in the denominator and is proposed for approximate calculation of the wave motion on the free surface of a viscous liquid cannot be formally applied to the wave motion on the uniformly charged liquid surface. The fact is that, when the surface charge density attains a value critical in terms for the Tonks-Frenkel instability, the wave frequency tends to zero. From the analysis of liquid motions near the electric charge critical density, a technique is proposed for calculating the thickness of a boundary layer attributed to flows of various kinds. It is found that the thickness of the boundary layer due to aperiodic flows with amplitudes exponentially growing with time (such flows take place at the stage of instability against the surface charge) does not exceed a few tenths of the wavelength, whereas the thickness of the boundary layer due to exponentially decaying liquid flows is roughly equal to the wavelength.  相似文献   

3.
The dynamics of the development of an instability of a charged surface of a liquid-helium layer with a finite depth is investigated. The equations describing the evolution of the free surface are derived with the use of conformal variables for the case in which the charge completely screens the electric field above the liquid. A model of the evolution of a spatially localized perturbation of a liquid-helium surface is proposed for the strong-field limit where the dynamics of the liquid is predominantly determined by the effect of electrostatic forces. This model describes the development of an instability of the initially planar boundary to the point of the formation of cuspidal dimples. The limit of an infinitely deep liquid is considered. The stability of the previously revealed liquid flow regime described by the Laplacian growth equations is proved without significant constraints on the surface geometry.  相似文献   

4.
The theory of a boundary layer that is adjacent to the surface of an indefinitely deep viscous liquid and caused by its periodic motion is modified for analysis of finite-amplitude flow motion on the charged surface of a viscous conductive finite-thickness liquid layer resting on a hard bottom (the thickness of the layer is comparable to the wavelength). With the aim of adequately describing the viscous liquid flow, two boundary layers are considered: one at the free surface and the other at the hard bottom. The thicknesses of the boundary layers are estimated for which the difference between an exact solution and a solution to a model problem (stated in terms of the modified theory) may be set with a desired accuracy in the low-viscosity approximation. It is shown that the presence of the lower (bottom) boundary layer should be taken into account (with a relative computational error no more than 0.001) only if the thickness of the viscous layer does not exceed two wavelengths. For thicker layers, the bottom flow may be considered potential. In shallow liquids (with a thickness of two tenths of the wavelength or less), the upper (near-surface) and bottom layers overlap and the eddy flow entirely occupies the liquid volume. As the surface charge approaches a value that is critical for the onset of instability against the electric field negative pressure, the thicknesses of both layers sharply grow.  相似文献   

5.
Electroconvective instability of a nonisothermal layer of a weakly conductive liquid with a free boundary whose surface tension depends linearly on temperature is considered for the case where charge injection is performed through this surface. When calculating the unperturbed stationary distribution of the charge and field, we supposed that the injector is separated from the liquid by an air gap of finite thickness. It was, however, assumed when analyzing the stability of the system that the motion in the air gap has no effect on the motion in the liquid phase and the disturbances of the electric field and charge in the air gap decay rapidly because of its high conductivity.  相似文献   

6.
An analytical expression of the second order of smallness in wave amplitude-to-wavelength ratio is derived for a horizontal flow arising in a finite-depth layer of a viscous liquid under the action of a periodic nonlinear capillary wave. It is found that the liquid flow is determined by the nonlinear component of the velocity field vortex part and the flow rate increases with increasing viscosity and decreasing wavelength irrespective of the layer thickness. In thin layers, the flow rate rapidly drops from its maximal value with increasing viscosity, wavelength, and surface charge density. If the liquid surface is charged, the horizontal liquid flow decreases rapidly as the surface charge density approaches the threshold of the Tonks-Frenkel instability.  相似文献   

7.
A semiphenomenological analysis is performed of possible modes of electric dispersion of drops and menisci at the end of the capillary used to deliver the liquid into the discharge system under an oscillatory instability of the charged liquid surface. The instability is assumed to be induced by a time-dependent external force acting on the liquid surface, a finite rate of charge redistribution over the surface under virtual deformations, and tangential discontinuity of the velocity field across the interface.  相似文献   

8.
We have derived and analyzed the dispersion equation for capillary waves with an arbitrary symmetry (with arbitrary azimuthal numbers) on the surface of a space-charged cylindrical jet of an ideal incompressible dielectric liquid moving relative to an ideal incompressible dielectric medium. It has been proved that the existence of a tangential jump of the velocity field on the jet surface leads to a periodic Kelvin–Helmholtz- type instability at the interface between the media and plays a destabilizing role. The wavenumber ranges of unstable waves and the instability increments depend on the squared velocity of the relative motion and increase with the velocity. With increasing volume charge density, the critical value of the velocity for the emergence of instability decreases. The reduction of the permittivity of the liquid in the jet or an increase in the permittivity of the medium narrows the regions of instability and leads to an increase in the increments. The wavenumber of the most unstable wave increases in accordance with a power law upon an increase in the volume charge density and velocity of the jet. The variations in the permittivities of the jet and the medium produce opposite effects on the wavenumber of the most unstable wave.  相似文献   

9.
The differential equation that describes the evolution of perturbations of a charged plane boundary between immiscible liquids when the upper liquid moves relative to the lower one with a time-dependent velocity parallel to the boundary is the Hill equation. In this system, the interface can exhibit instabilities of three types at various values of physical parameters: the Kelvin-Helmholtz, Tonks-Frenkel, and parametric instability. When physical parameters have certain values, the interface that is unstable with respect to surface charge and the tangential discontinuity of the velocity field across the interface can be parametrically stabilized.  相似文献   

10.
The influence of the finiteness of the charge transfer rate on the electrostatic instability of the lateral surface of a viscous liquid jet is studied. The study is based on the analysis of a dispersion relation for flexural-deformation capillary waves on the surface of the jet with allowance for charge relaxation. The jet is subjected to a superposition of two electrostatic fields one of which is collinear with the jet’s axis and the other is directed radially to the former. It is found that the finiteness of the potential equalization rate influences jets of a poorly conducting liquid most strongly. The charge relaxation shows up in the appearance of both periodic and aperiodic “purely relaxation” flows. Relaxation flows give rise to electrostatic instability in low-permittivity liquids. When the conductivity of the liquid drops, the instability growth rate of relaxation waves grows and their spectrum expands toward shorter waves. An increase in the charge surface diffusion coefficient introduces destabilization into the relaxation flows of the liquid, which may eventually become unstable.  相似文献   

11.
Abastract A dispersion relation is derived and analyzed for the spectrum of capillary motions on the charged plane surface of a liquid in which a surfactant is dissolved. It is shown that two additional wave motions are generated in this kind of system by bulk diffusion and surface diffusion of the surfactant and are sensitive to the diffusion coefficients and elastic properties of the surfactant films and to the viscosity of the solution and the presence of a surface charge. In solutions of inactive surfactants the growth rate of Tonks-Frenkel instability increases as the surfactant concentration increases. Zh. Tekh. Fiz. 68, 22–29 (February 1998)  相似文献   

12.
It is found theoretically that the critical conditions under which a charged liquid surface becomes unstable against the electric charge relax as a result of interaction between capillary-gravitational and convective flows in the liquid. As the surface charge density approaches a value critical in terms of development of Tonks-Frenkel instability, convection in the liquid arises at a temperature gradient however small, this effect depending on the liquid layer thickness.  相似文献   

13.
The instability of the charged free surface of a horizontal liquid layer heated from the solid bottom against excess electric charge is studied theoretically for the case in which this type of instability is combined with thermal-convective instability. The structure of the total spectrum of unstable wave flows and physical parameters influencing the structure of the spectrum are determined.  相似文献   

14.
V. M. Korovin 《Technical Physics》2012,57(10):1353-1363
An asymptotic analysis of the equations and boundary conditions of fluid dynamics is performed, and a nonlinear model is constructed for the onset of the development of Rosensweig instability in a thin horizontal ferrofluid layer at rest covered with a thin layer of a lighter nonmagnetic liquid. The surface of a nonmagnetized slab is the lower boundary of the ferrofluid, and the interface with a gas is the upper boundary of the nonmagnetic liquid. The pressure in the gas is constant. The instability being considered arises upon the application of a rather strong uniform vertical magnetic field. The proposed model involves five dimensionless parameters. The critical magnetization of the initial ferrofluid layer with a flat upper boundary and the threshold wave number are found. The effect of the governing parameters on the instability region and on the wavelength of the fastest growing mode is studied in the linear formulation of the problem.  相似文献   

15.
Analysis is presented of the effect on the instability of a droplet of viscous liquid induced by its self-charge of such physical factors as corona discharge initiated in its vicinity and self-sustaining due to photoionization, evaporation of the liquid, and field vaporization of the charge. It has been shown that droplets of micron and submicron size lose their excess charge primarily due to field vaporization.  相似文献   

16.
A dispersion relation is derived for capillary waves with an arbitrary symmetry on the surface of a charged jet of a finite-conductivity viscous liquid placed in an electric field collinear with the axis of the jet. Analytical calculations are carried out in an approximation that is linear in dimensionless wave amplitude. In the case of axisymmetric waves, the instability of which causes disintegration of the jet into drops, the finiteness of the potential equalization rate has a noticeable effect only for jets of poorly conducting liquids. The charge relaxation shows up in that “purely relaxation” periodic and aperiodic liquid flows arise. When the conductivity of the liquid declines, the instability growth rates for unstable waves increase and their spectrum extends toward short waves. A charge present on the surface of the jet enhances its instability. An increase in the charge surface diffusion coefficient variously influences the capillary and relaxation branches of the solution: the damping ratio increases in the former case and decreases in the latter. As the diffusion coefficient rises, relaxation flows may become unstable.  相似文献   

17.
An analytical expression for the profile of a finite-amplitude wave on the free charged surface of a deep low-viscosity conducting liquid is derived in an approximation quadratic in wave amplitude-to-wavelength ratio. It is shown that viscosity causes the wave amplitude to decay with time and makes the wave profile asymmetric at surface charge densities subcritical in terms of Tonks-Frenkel instability. At supercritical values of the surface charge density, taking account of viscosity decreases the growth rate of emissive protrusions on the unstable free surface, slightly broadens them for short waves, and narrows for long ones. Analytical expressions for the wave frequencies, damping rates, and instability growth rates with regard to viscosity are found.  相似文献   

18.
The pressure balance on the surface of a charged liquid drop moving along a uniform electrostatic field is analyzed. The liquid is assumed to be nonviscous and incompressible. In the approximation linear in deformation amplitude, the equilibrium shape of the drop as a function of the charge, field strength, and velocity of travel can be both a prolate and an oblate spheroid. Critical conditions for the surface instability of such a drop are obtained analytically in the form of a relationship between the charge, field strength, and velocity of travel. An instability criterion is found by extrapolating to large Reynolds numbers. This makes it possible to fit the earlier model of a corona-initiated lightning in the vicinity of large charged water drops or hailstones to the charges of the drops, field strengths, and velocities of travel (relative to the medium) typical of thunderclouds.  相似文献   

19.
The onset of electrothermal convective instability of a liquid dielectric subjected to an unsteady electric field is studied in the EHD approximation, when charge formation is produced only due to dielectrophoresis. Convective thresholds are found in two different cases: (i) instability of the liquid equilibrium in a horizontal layer, and (ii) instability of the liquid flow in a vertical layer. The stability boundaries are obtained when there is interaction of dielectrophoretic and gravitational forces. Stability plots of electrical Rayleigh number versus thermal Rayleigh number are given. We show that only synchronous response to variations of the external electric field of finite frequency exists when heating a horizontal layer from above. Quasiperiodic response to the external alternating action is possible in the case of a vertical layer. The influence of the Prandtl number on the stability thresholds is also examined. The asymptotic behavior of the critical parameters in the limiting case of low-frequency modulation is studied using the Wentzel–Kramers–Brillouin method.  相似文献   

20.
In the fourth order of smallness in the amplitude of a periodic capillary-gravitational wave travelling over the uniformly charged free surface of an ideal incompressible conducting liquid of a finite depth, analytical expressions for the evolution of the nonlinear wave, velocity field potential of the liquid, electrostatic field potential above the liquid, and nonlinear frequency correction that is quadratic in a small parameter are derived. It is found that the dependence of the amplitude of the nonlinear correction to the frequency on the charge density on the free liquid surface and on the thickness of the liquid layer changes qualitatively when the layer gets thinner. In thin liquid layers, the resonant wavenumber depends on the surface charge density, while in thick layers, this dependence is absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号