首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
龚佳  蒋益明  钟澄  邓博  刘平  李劲 《物理学报》2009,58(2):1305-1309
采用同位素H216O/H218O接续氧化同位素示踪方法,研究了单晶硅在1100 ℃水汽中氧化的微观传质机制.在H216O,H218O分别氧化和H216O/H218O接续氧化处理后,研究氧化产物形态和结构.并用二次离子质谱仪(SIMS)研究了同位素 关键词: 同位素示踪 218O')" href="#">H218O 替位扩散 硅  相似文献   

2.
采用同位素H216O/H218O接续氧化同位素示踪方法,研究了单晶硅在1100 ℃水汽中氧化的微观传质机制.在H216O,H218O分别氧化和H216O/H218O接续氧化处理后,研究氧化产物形态和结构.并用二次离子质谱仪(SIMS)研究了同位素16O和18O在氧化膜中浓度分布.结果表明H2O蒸汽中氧化产物为非晶态SiO2.H216O/H218O接续氧化后,16O与18O在氧化膜中呈渐次梯度分布,表明Si在水汽中的氧化传质机制为替位扩散机制.  相似文献   

3.
从分子离子H+3及其氘化同位素分子离子D+3和HD+2与超薄固体膜相互作用发生库仑爆炸为基础,分析讨论了H+3,D+3和HD+2三种分子离子的形成机理,根据产物能谱分布,利用库仑爆炸技术确定了同位素分子离子HD+2的结构形式,给出具体核间距数值.并确定在实验中不存在线状结构的HD+2.提出一种三原子分子离子和固体相互作用中尾流效应的处理方式,通过和实验结果做比较发现这是一种非常理想的处理三体尾流效应的模式,并用之进一步确认了HD+2的结构形状.文章对H+3,D+3和HD+2三种分子离子的实验结果做了对比和讨论. 关键词: +2')" href="#">微团簇HD+2 +3和D+3')" href="#">H+3和D+3 库仑爆炸 三体尾流势 团簇结构  相似文献   

4.
采用卢瑟福背散射方法,测得了每质子能量为650 keV的H+2,H+3团簇离子在Si晶体<100>和<110>沟道条件下的质子背散射能谱.结果发现,由于H+2,H+3团簇在晶体中的库仑爆炸和团簇效应,H+2的背散射质子产额大于H +的背散射产额,而H+< 关键词: 团簇 沟道效应 库仑爆炸 背散射  相似文献   

5.
利用静电加速器提供的0.6—1.8MeV的H+,H+2,H+3离子,轰击不同厚度的碳膜,分别测量这些离子通过碳膜后各种产物的产额. 得到了不同能量的H+通过碳膜后中性原子H和负离子H-的产额随入射质子速度的变化关系;分别得到能量为1.2MeV,1.8MeV的H+2,H+3团簇离子通过不同厚度碳膜的透射产额及其与团簇离子在碳膜中驻留时间的关系;对结果进行了理论分析与讨论. 关键词: 团簇离子 电荷交换  相似文献   

6.
H+5团簇离子及其中性团簇产物H3和H4   总被引:1,自引:0,他引:1       下载免费PDF全文
报道了H+5的实验结果.分析讨论了H+5的 形成和分解途径.根据理论分析,以稳定的H+3为核心与一个或多个氢分子结合可能形成稳定的H+n氢团簇离子.另一方面,在高频离子源中, 有发生H+3与H2反应的条件.实 验中,从高频离子源引出的离子束被静电加速器加速,然后用9 关键词: +5团簇离子')" href="#">H+5团簇离子 3中性团簇')" href="#">H3中性团簇 4中性团簇')" href="#">H4中性团簇  相似文献   

7.
本文采用密度泛函理论,对ThO+/0/-2团簇参与CO与N2O间氧化还原反应(CO+N2O→CO2+N2)的机理展开研究,探讨钍氧团簇所带的电荷对该反应的影响.研究表明:ThO+/0/-2在反应中主要起传输氧原子的作用,其中ThO+2与CO的反应以及ThO+/0/-与N2O的反应都为热力学上的放热反应,而ThO0/-2与CO的反应为热力学上的吸热反应.随着电荷态的改变,ThO+/0/-2与CO反应的总能垒(Eb)与总驱动力(-ΔG)有较大差异.因此,通过改变ThO2的电荷态能调节其对CO/N2O反应的催化活性,综合考虑,ThO+2对...  相似文献   

8.
为HL-2A 装置中性束注入器研制了引出束功率为1MW 的射频离子源。在测试平台上,实验离子源已经成功引出了束能量和束电流分别为35keV 和12.4A、束质子比为79%、脉宽为100ms 的氢离子束,达到了设计束功率要求的44%。在射频离子源实验平台上,利用多普勒频移光谱方法测量了离子源引出束流成分比例,对比了束流成分和射频离子源引出束流之间的关系。实验数据分析表明,在10A 引出束流的情况下,离子流成分 H+ 1、H+ 2 和H+ 3 分别为75%、18%和7%。并且当引出束流从3.3A 升至10.4A 时,H+ 1 从37%升至78%,而H+ 3 则从19%降至9%。  相似文献   

9.
张增院  郜小勇  冯红亮  马姣民  卢景霄 《物理学报》2011,60(3):36107-036107
利用直流磁控反应溅射技术在玻璃衬底上沉积了单相Ag2O薄膜,并采用真空热退火对单相Ag2O薄膜在不同热退火温度 (T A) 下进行了1 h热处理.利用X射线衍射谱、扫描电子显微镜和分光光度计研究了 T A对单相Ag2O薄膜微结构和光学性质的影响.研究结果表明, TA= 300 ℃ 时Ag2O薄膜中开始出现Ag纳米颗粒,且随着 T A的升高薄膜中Ag的含量 关键词: 2O薄膜')" href="#">Ag2O薄膜 热退火温度 微结构 光学性质  相似文献   

10.
在直接计算分子配分函数的基础上,将无转动跃迁偶极矩平方近似为一常数,计算了渐近非对称陀螺分子H122C16O 100000-000000跃迁在中等温度和高温下的线强度. 计算结果在500K时与HITRAN数据库的结果吻合相当好.在温度高达3000K时与HITRAN数据库的结果仍符合较好,表明分子配分函数和线强度的高温计算是可靠的.在此基础上,进一步计算了渐近非对称陀螺分子H122C16O 100000-000000跃迁带在极端高温4000和5000K的线强度并报道其模拟光谱.计算结果对大气分子高温光谱的实验测量和理论研究均有一定的参考价值. 关键词: 高温光谱 渐近非对称陀螺分子 配分函数 甲醛  相似文献   

11.
The absorption spectrum of 18O enriched water has been recorded by continuous wave cavity ring down spectroscopy between 5905.7 and 6725.7 cm−1 using a series of fibred DFB lasers. The investigated spectral region corresponds to the important 1.55 μm transparency window of the atmosphere where water absorption is very weak. The typical CRDS sensitivity (noise equivalent absorption of 5×10−10 cm−1) allowed for the detection of lines with intensity as low as 10−28 cm/molecule while the minimum intensity value provided by HITRAN in the considered spectral region is 1.7×10−24 cm/molecule. The line parameters were retrieved with the help of an interactive least squares multi-lines fitting program assuming a Voigt function as line profile. Overall, 4510 absorption lines belonging to the H218O, H216O, HD18O, HD16O and H217O water isotopologues were measured. Their intensities range between 3×10−29 and 5×10−23 cm/molecule at 296 K and the typical accuracy on the line positions is 1×10−3 cm−1. 2074 of the observed lines attributed to H218O, HD18O and H217O are reported for the first time. The transitions were assigned on the basis of variational calculations resulting in 288, 135 and 38 newly determined rovibrational energy levels for the H218O, HD18O and H217O isotopologues, respectively. The new data set includes the band origin of the 4ν2 bending overtone of H218O at 6110.4239 cm−1 and rovibrational levels corresponding to J and Ka values up to 18 and 12, respectively, for the strongest bands of H218O: 4ν2, ν1+2ν2, 2ν2+ν3, 2ν1, ν1+ν3, and ν2+ν3. The obtained experimental results have been compared to the spectroscopic parameters provided by the HITRAN database and to the recent IUPAC critical review of the rovibrational spectrum of H218O and H217O as well as to variational calculations. Large discrepancies between the 4ν2 variationally predicted and experimental intensities have been evidenced for the H218O and H216O molecules.  相似文献   

12.
The diffusion mechanism during the wet oxidation of Si(100) at 1373 K was investigated by successive oxidations finally containing isotopic water. SiO2 was first thermally grown on Si in non-labeled oxidizing ambient (dry O2 or H2O) followed by isotopic water (H218O) to trace 18O species in SiO2. The distributions of 16O and 18O in the oxide film were analyzed by means of secondary ion mass spectroscopy (SIMS). SIMS depth profiles show that there was a wide overlap of both isotopes (18O and 16O) throughout the SiO2 layer, no matter whether the first oxidation step was carried out in dry O2 or H2O, and the concentration gradient of 18O decreased with increasing oxidation time at the second oxidation step by H218O. The results suggest that the diffusion mechanism in SiO2 during water vapor oxidation is exchange diffusion; H2O related oxidizing species diffuse through the network with significant exchange with the pre-existing oxygen in it.  相似文献   

13.
The absorption spectra of water vapor near 1.455 and 1.66 μm have been recorded with a typical absorption sensitivity of 5 × 10−10 cm−1 by using CW-cavity ring down spectroscopy. A series of 18 distributed feed-back (DFB) lasers was used as sources and allowed for the coverage of the 5911.0-5922.5, 5926-5941.8, 5957.0-6121.6, and 6745-7015.6 cm−1 spectral regions. These regions extend to lower and higher energies our previous study of the water spectrum in the important 1.5 μm transparency window [P. Macko, D. Romanini, S.N. Mikhailenko, O.V. Naumenko, S. Kassi, A. Jenouvrier, Vl.G. Tyuterev, J. Mol. Spectrosc. 227 (2004) 90-108]. The line parameters were determined with the help of an interactive least squares multi-lines fitting program which uses a Voigt function as line profile. More than 1900 water lines with intensities ranging between 10−28 and 5 × 10−24 cm/molecule at 296 K were measured, about 690 of them being reported for the first time. The rovibrational assignment was performed on the basis of previously determined energy levels and of the results of the variational global calculations [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618-4639]. The assignment results were validated by using the Ritz combination principle together with previously reported water transitions. Several new energy levels were determined for the H216O, H217O, and HD16O isotopologues. The retrieved line lists of the H216O, H217O, H218O, and HD16O isotopologues are compared with the available calculated and experimental (FTS) databases for water.  相似文献   

14.
The high resolution absorption spectrum of the H218O isotopologue of water has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) with a sensitivity on the order of αmin ∼ 10−9 cm−1. The 11 520-12 810 cm−1 spectral region corresponding to the 3ν + δ decade of vibrational states, was explored with an ICLAS spectrometer based on a Ti:Sapphire laser. It allowed detecting transitions with an intensity down to 10−27 cm/molecule which is about 100 times lower than the weaker line intensities available in the literature, in particular in the HITRAN database.The rovibrational assignment was performed on the basis of the results of variational calculations and allowed for assigning 3659 lines to the H216O, H218O, H217O, HD16O and HD18O species, leaving only 1.7% unassigned transitions. A line list including 1712 transitions of H218O has been generated and assigned leading to the determination of 692 rovibrational energy levels belonging to a total of 16 vibrational states, 386 being newly observed. A deviation on the order of 25% has been evidenced for the average intensity values given by HITRAN and the results of variational calculations. Ninety two transitions of the HD18O isotopologue could also be assigned and the corresponding upper rovibrational levels are given.  相似文献   

15.
High-sensitivity Intracavity Laser Absorption Spectroscopy (ICLAS) is used to measure the high resolution absorption spectrum of H218O between 12,580 and 13,550 cm−1. This spectral region covers the 3v+δ polyad of very weak absorption. Four isotopologues of water (H218O, H216O, H217O, HD18O) are found to contribute to the observed spectrum. Spectrum analysis is performed with the aid of variational calculations and allowed for assigning 1126 lines belonging to H218O, while only 160 H218O lines are included in the HITRAN-2008 database. Altogether, 823 accurate energy levels of H218O are determined from transitions attributed to 26 upper vibrational states, 438 of them being reported for the first time. New information includes energy levels of four newly observed vibrational states of H218O: (2 4 0), (1 4 1), (0 4 2) and (2 3 1) at 13,167.718, 13,212.678, 13,403.71 and 15,073.975 cm−1, respectively. H218O transitions involving highly excited bending states like (1 6 0), (0 6 1), (0 7 1), (1 7 0), (0 9 0) and even (0 10 0) have been identified as a result of an intensity borrowing from stronger bands via high-order resonance interactions. Thirty-six new energy levels of H217O, present with a 2% relative concentration in our sample, could be determined. The rotational structure of the (0 2 3) state of HD18O at 13,245.497 cm−1 is also reported for the first time.  相似文献   

16.
The absorption spectrum of water vapor in “natural” isotopic abundance has been recorded between 7408 and 7920 cm−1 by high sensitivity cw-cavity ring down spectroscopy (CW-CRDS). This region covers the low energy part of the 1.25 μm transparency window and corresponds to weak water absorption of the first hexad of interacting vibrational bands. The achieved sensitivity – on the order of αmin ∼ 2 × 10−10 cm−1 – has allowed one to newly measure 2028 weak transitions with intensities down to 2 × 10−29 cm/molecule at 296 K i.e. more than two orders of magnitude lower than previous observations. Three hundred and fourty-one new and corrected energy levels belonging to 26 vibrational states of H216O, H218O, H217O, and HD16O could be determined from the vibration–rotation analysis based on variational calculations by Schwenke and Partridge. The previous investigations in the studied region by Fourier Transform Spectroscopy and existing databases have been critically evaluated. The most complete list for water in the region is provided as Supplementary Material.  相似文献   

17.
IR spectra of BeSO4.4H2O and its deuterated analogue at ∼300 K and ∼110 K are reported in the region 4000–1200 cm−1 using thin film and nujol mull techniques. The observed bands have been assigned as the internal modes of the water and the overtones and combinations of various modes using the recently revised assignments of SO4 2− and Be(aq)4 fundamentals in the region 1200–250 cm−1 (Srivastavaet al 1976). The splitting of the internal modes of water has been discussed in the light of the effects of deuteration and cooling and it is shown that all the water molecules in a unit cell are asymmetric but crystallographically equivalent.  相似文献   

18.
Previous investigations have shown that it is difficult to acquire the infrared (IR) spectra of M+(H2O) (M?=?Cu, Au) using a single IR photon by attaching an Ar atom to M+(H2O). To explore whether the IR spectra can be obtained using the two Ar atoms tagging method, the geometrical structures, IR spectra and interaction energies are investigated in detail by ab initio electronic structure calculations for M+(H2O)Ar2 (M?=?Cu, Au) complexes. Two conceivable isomeric structures are found, which result from different binding sites for two Ar atoms. CCSD(T) calculations predict that two Ar atoms are most likely to attach to Cu+ for the Cu+(H2O)Ar2 complex, while the Au+(H2O)Ar2 complex prefers the isomer in which one Ar atom attaches to an H atom of the H2O molecule and the other one is bound to Au+. Moreover, the calculated binding energies of the second Ar atom are smaller than the IR photon energy, and so it is possible to obtain the IR spectra for both Cu and Au species. The changes in the spectra caused by the attachment of Ar atoms to M+(H2O) are discussed.  相似文献   

19.
The microstructure of aqueous CuCl2 has been studied through lots of technologies for many years; however, it remains a controversial subject. In this study, a new spectroscopic method has been proposed to analyze the UV-visible spectra of thin film of CuCl2/H2O solutions at different concentrations. This method is the combination of ratio spectra, difference spectra and second order difference spectra. By using this method, two new bands at ~230 and ~380 nm are obviously observed. The bands are assigned as the contacted ion pairs[CuCl3(H2O)n]- or[CuCl4(H2O)n]2-, which demonstrates that ion pairs exist in the CuCl2/H2O solution. Such finding agrees with the recent theoretical spectra obtained by time-dependent density functional theory. Furthermore, the populations of the contacted ion pairs are discussed. This study not only offers the direct spectroscopic evidence of[CuCl3(H2O)n]- or[CuCl4(H2O)n]2- in aqueous CuCl2, but also suggests that the spectroscopic analysis method is powerful to extract the weak bands in a strong overlapping spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号