首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
张潇丹  张庆  蒋艳  徐溢 《化学通报》2015,78(9):772-777
微流控芯片以其消耗少、易于微型化和集成化等优点在酶分析领域占有重要地位。近年来随着新检测技术的不断出现,酶抑制剂筛选芯片的结构也从简单的“混合-反应”和“分离-检测”,变得更加多样化和多功能化。微流控芯片上分子固定化酶、细胞培养等技术的进步为微流控芯片上实现酶抑制剂的高通量和高内涵筛选带来了巨大优势。本文对用于酶分析的微流控芯片的种类和构型进行简介和归纳总结,重点讨论和综述了其在酶抑制剂筛选中的应用及其最新研究进展。  相似文献   

2.
微流控芯片以其消耗少、易于微型化和集成化等优点在酶分析领域占有重要地位。近年来随着新检测技术的不断出现,酶抑制剂筛选芯片的结构也从简单的"混合-反应"和"分离-检测"变得更加多样化和多功能化。微流控芯片上分子固定化酶、细胞培养等技术的进步为微流控芯片上实现酶抑制剂的高通量和高内涵筛选带来了巨大优势。本文对用于酶分析的微流控芯片的种类和构型进行简介和归纳总结,重点讨论和综述了其在酶抑制剂筛选中的应用及其最新研究进展。  相似文献   

3.
酶解是蛋白质分析的重要前处理方法.微流控芯片具有样品耗样量小,可以实现样品的预处理、分离、富集、鉴定等分析过程于一体等特点.将酶固定在微流控分析芯片上,可以为蛋白质样品的分析提供一个高通量的技术平台.  相似文献   

4.
微流控芯片操纵传输及实时监测单细胞量子释放   总被引:2,自引:0,他引:2  
微流控芯片技术用于细胞生化分析已引起了广泛关注.Harrison等首次在微流控芯片上对细胞群体进行操纵、传输及反应.yang等在微流控芯片上操纵细胞群体的排列,并用荧光检测细胞群体摄取钙的反应.至今还未见到微流控芯片对单个细胞进行操纵传输、定位及实时监测的报道.单细胞受激释放的监测对探索生物体神经传导具有重要意义.  相似文献   

5.
微流控芯片中磁珠作为固相载体的免疫分析得到了非常广泛的应用,了解磁珠表面动力学行为对于磁免疫分析技术的改进与提高具有重要意义。本文建立了一种实时监测微流控芯片中磁珠表面免疫反应的方法,探究了微流控芯片中流速和分析物浓度对磁珠表面偶联的小鼠IgG和溶液中Cy3标记的羊抗小鼠IgG反应动力学的影响,并获得相应的结合和解离速率常数,分别为7.9×104 L·mol-1·s-1,和1.7×10-4 s-1。  相似文献   

6.
冷川  张晓清  鞠滉先 《化学进展》2009,21(4):687-695
近20年来,随着微流控芯片加工技术的不断发展,微流控分析已从一个概念发展为当前世界上最前沿的科技领域之一,微流控芯片上免疫分析的方法研究也取得重要进展。这些芯片包含传输流体的微通道和免疫分析程序中部分或全部的必要组件。微流控技术用于免疫分析在减少试剂用量、缩短分析时间、自动化等方面提高了分析性能。本文综述了微流控芯片上免疫分析的发展、分类,并评述了各类微流控免疫分析芯片的性能及优缺点。  相似文献   

7.
建立了一种在微流控芯片上进行同工酶孵育及活性检测的方法. 该方法在集成温控装置的微流控芯片上实现对同工酶与辅酶反应进程的控制, 完成同工酶的进样、孵育反应、电泳分离和活性检测的实验步骤. 建立了基于微流控芯片的同工酶荧光检测系统, 使用360 nm光源激发辅酶产生荧光, 在460 nm处选择性采集荧光信号. 在微流控芯片上实现了同工酶样品的快速活性检测, 酶活性检测限达到0.5 U/L.  相似文献   

8.
3D打印微流控芯片技术研究进展   总被引:2,自引:0,他引:2  
近年来,微流控技术在生命科学和医学诊断等领域得到广泛的应用,显示出了其在检测速度、精度以及试剂损耗等方面相比传统方法的显著优势.然而,使用从半导体加工技术继承而来的微加工技术制作微流控芯片具有比较高的资金和技术门槛,在一定程度上阻碍了微流控技术的推广和应用.近年来随着3D打印技术的兴起,越来越多的研究者尝试使用3D打印技术加工微流控芯片.相比于传统的微加工技术,3D打印微流控芯片技术显示出了其设计加工快速、材料适应性广、成本低廉等优势.本文针对近年来国内外在3D打印微流控芯片领域的最新进展进行了综述,着重介绍了采用微立体光刻、熔融沉积成型以及喷墨打印等3D打印技术加工制作微流控芯片的方法,以及这些微流控芯片在分析化学、生命科学、医学诊断等领域的应用,并对3D打印微流控芯片技术未来的发展进行了展望.  相似文献   

9.
石杨  邵小光 《色谱》2019,37(9):925-931
生殖是生物体最基本特征之一,是物种得以延续和进化的保证。近年来,微流控芯片系统得到了迅猛发展,技术也逐渐成熟,具有良好的应用前景。在生殖研究中,微流控技术具有以下优势:微管道的形状和尺寸可以灵活设计,从而更好地模拟生理环境;微流控芯片对样品的消耗量低;微流控技术具有很高的集成性。微流控技术已被应用到精子活力评价与筛选、精子的化学趋向性筛选、卵丘细胞去除、透明带移除、卵细胞定位与筛选、受精过程、早期胚胎培养以及生殖器官模拟等各个方面。该文着重介绍近几年基于微流控技术生殖研究的最新进展,并对其应用前景进行展望。  相似文献   

10.
细胞分析和代谢物分析在生物系统中起着重要的作用。微流控技术已成为细胞生物学研究的一个重要工具。该文总结了最近微流控芯片在细胞和代谢物的分析,尤其是微流控芯片与质谱联用技术的应用。同时对微流控芯片上细胞的生物学研究提出了见解和看法,希望能对感兴趣者提供一些启发。  相似文献   

11.
Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.  相似文献   

12.
Cheng JY  Hsieh CJ  Chuang YC  Hsieh JR 《The Analyst》2005,130(6):931-940
This study develops a novel temperature cycling strategy for executing temperature cycling reactions in laser-etched poly(methylmethacrylate) (PMMA) microfluidic chips. The developed microfluidic chip is circular in shape and is clamped in contact with a circular ITO heater chip of an equivalent diameter. Both chips are fabricated using an economic and versatile laser scribing process. Using this arrangement, a self-sustained radial temperature gradient is generated within the microfluidic chip without the need to thermally isolate the different temperature zones. This study demonstrates the temperature cycling capabilities of the reported microfluidic device by a polymerase chain reaction (PCR) process using ribulose 1,5-bisphosphate carboxylase large subunit (rbcL) gene as a template. The temperature ramping rate of the sample inside the microchannel is determined from the spectral change of a thermochromic liquid crystal (TLC) solution pumped into the channel. The present results confirm that a rapid thermal cycling effect is achieved despite the low thermal conductivity of the PMMA substrate. Using IR thermometry, it is found that the radial temperature gradient of the chip is approximately 2 degrees C mm(-1). The simple system presented in this study has considerable potential for miniaturizing complex integrated reactions requiring different cycling parameters.  相似文献   

13.
Y Hanada  K Sugioka  K Midorikawa 《Lab on a chip》2012,12(19):3688-3693
The demand for increased sensitivity in the concentration analysis of biochemical liquids is a crucial issue in the development of lab on a chip and optofluidic devices. We propose a new design for optofluidic devices for performing highly sensitive biochemical liquid assays. This design consists of a microfluidic channel whose internal walls are coated with a polymer and an optical waveguide embedded in photostructurable glass. The microfluidic channel is first formed by three-dimensional femtosecond laser micromachining. The internal walls of the channel are then coated by the dipping method with a polymer that has a lower refractive index than water. Subsequently, the optical waveguide is integrated with the microfluidic channel. The polymer coating on the internal walls permits the probe light, which is introduced by the optical waveguide, to propagate along the inside of the microfluidic channel. This results in a sufficiently long interaction length between the probe light and a liquid sample in the channel and thus significantly improves the sensitivity of absorption measurements. Using the fabricated optofluidic chips, we analyzed protein in bovine serum albumin to concentrations down to 7.5 mM as well as 200 nM glucose-D.  相似文献   

14.
微流控芯片上的细胞分析研究进展   总被引:2,自引:0,他引:2  
近年来,微流控分析系统(μTAS)在生物细胞分离领域的发展引起了广泛的关注。微流控芯片的微米级尺寸的通道适合于单细胞样品的引入、操控、反应、分离和检测,已经在微芯片上实现了上述功能,并将这些功能集成在具备毛细管电泳分离功能的微芯片上。  相似文献   

15.
This paper reports on the surface modification of plastic microfluidic channels to prepare different biomolecule micropatterns using ultraviolet (UV) photografting methods. The linkage chemistry is based upon UV photopolymerization of acryl monomers to generate thin films (0.01-6 microm) chemically linked to the organic backbone of the plastic surface. The commodity thermoplastic, cyclic olefin copolymer (COC) was selected to build microfluidic chips because of its significant UV transparency and easiness for microfabrication by molding techniques. Once the polyacrylic films were grafted on the COC surface using photomasks, micropatterns of proteins, DNA, and biotinlated conjugates were readily obtained by surface chemical reactions in one or two subsequent steps. The thickness of the photografted films can be tuned from several nanometers up to several micrometers, depending on the reaction conditions. The micropatterned films can be prepared inside the microfluidic channel (on-chip) or on open COC surfaces (off-chip) with densities of functional groups about 10(-7) mol/cm2. Characterization of these films was performed by attenuated-total-reflectance IR spectroscopy, fluorescence microscopy, profilometry, atomic force microscopy, and electrokinetic methods.  相似文献   

16.
We have evaluated double-stranded DNA separations in microfluidic devices which were designed to couple a sample preconcentration step based on isotachophoresis (ITP) with a zone electrophoretic (ZE) separation step as a method to increase the concentration limit of detection in microfluidic devices. Developed at ACLARA BioSciences, these LabCard trade mark devices are plastic 32 channel chips, designed with a long sample injection channel segment to increase the sample loading. These chips were designed to allow stacking of the sample into a narrow band using discontinuous ITP buffers, and subsequent separation in the ZE mode in sieving polymer solutions. Compared to chip ZE, the sensitivity was increased by 40-fold and we showed baseline resolution of all fragments in the PhiX174/HaeIII DNA digest. The total analysis time was 3 min/sample, or less than 100 min per LabCard device. The resolution for multiplexed PCR samples was the same as obtained in chip ZE. The limit of detection was 9 fg/microL of DNA in 0.1xpolymerase chain reaction (PCR) buffers using confocal fluorescence detection following 488 nm laser excitation with thiazole orange as the fluorescent intercalating dye.  相似文献   

17.
Applicability of polydimethylsiloxane (PDMS) for easy and rapid fabrication of enzyme sensor chips, based on electrochemical detection, is examined. The sensor chip consists of PDMS substrate with a microfluidic channel fabricated in it, and a glass substrate with enzyme-modified microelectrodes. The two substrates are clamped together between plastic plates. The sensor chip has shown no leakage around the microelectrodes under continuous solution flow (34 μl/min). Amperometric response of the sensor chips developed in this work suggest that various types of enzyme sensors can be designed by using PDMS microfluidic channels.  相似文献   

18.
This work depicts the original combination of electrochemiluminescence (ECL) and bipolar electrochemistry (BPE) to map in real-time the oxidation of silicon in microchannels. We fabricated model silicon-PDMS microfluidic chips, optionally containing a restriction, and monitored the evolution of the surface reactivity using ECL. BPE was used to remotely promote ECL at the silicon surface inside microfluidic channels. The effects of the fluidic design, the applied potential and the resistance of the channel (controlled by the fluidic configuration) on the silicon polarization and oxide formation were investigated. A potential difference down to 6 V was sufficient to induce ECL, which is two orders of magnitude less than in classical BPE configurations. Increasing the resistance of the channel led to an increase in the current passing through the silicon and boosted the intensity of ECL signals. Finally, the possibility of achieving electrochemical reactions at predetermined locations on the microfluidic chip was investigated using a patterning of the silicon oxide surface by etched micrometric squares. This ECL imaging approach opens exciting perspectives for the precise understanding and implementation of electrochemical functionalization on passivating materials. In addition, it may help the development and the design of fully integrated microfluidic biochips paving the way for development of original bioanalytical applications.  相似文献   

19.
A new, versatile architecture is presented for microfluidic devices made entirely from glass, for use with reagents which would prove highly corrosive for silicon. Chips consist of three layers of glass wafers bonded together by fusion bonding. On the inside wafer faces a network of microfluidic channels is created by photolithography and wet chemical etching. Low dead-volume fluidic connections between the layers are fabricated by spark-assisted etching (SAE), a computer numerical controlled (CNC)-like machining technique new to microfluidic system fabrication. This method is also used to form a vertical, long path-length, optical cuvette through the middle wafer for optical absorbance detection of low-concentration compounds. Advantages of this technique compared with other, more standard, methods are discussed. When the new glass-based device for flow-injection analysis of ammonia was compared with our first-generation chips based on silicon micromachining, concentration sensitivity was higher, because of the longer path-length of the optical cuvette. The dependence of dispersion on velocity profile and on channel cross-sectional geometry is discussed. The rapid implementation of the devices for an organic synthesis reaction, the Wittig reaction, is also briefly described.  相似文献   

20.
We describe a microfluidic approach for allele-specific extension of fluorescently labeled nucleotides for scoring of single-nucleotide polymorphism (SNP). The method takes advantage of the fact that the reaction kinetics differs between matched and mismatched configurations of allele-specific primers hybridized to DNA template. A microfluidic flow-through device for biochemical reactions on beads was used to take advantage of the reaction kinetics to increase the sequence specificity of the DNA polymerase, discriminating mismatched configurations from matched. The volume of the reaction chamber was 12.5 nL. All three possible variants of an SNP site at codon 72 of the p53 gene were scored using our approach. This work demonstrates the possibility of scoring SNP by allele-specific extension of fluorescently labeled nucleotides in a microfluidic flow-through device. The sensitive detection system and easy microfabrication of the microfluidic device enable further miniaturization and production of an array format of microfluidic devices for high-throughput SNP analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号