首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel tripodal imine-phenol ligands, cis,cis-1,3,5-tris{(2-hydroxybenzilidene)aminomethyl}cyclohexane (TMACHSAL, L1) and of cis,cis-1,3,5-tris{[(2-hydroxyphenyl)ethylidene]aminomethyl}cyclohexane (Me3-TMACHSAL, L2) have been synthesized and characterized by elemental analyses and various spectral (UV–vis, IR and 1H and 13C NMR) data. The complexation reactions of the ligands with H+ and Fe(III) were investigated by potentiometric and spectrophotometric methods at an ionic strength of 0.1 M KCl and 25 ± 1 °C in aqueous medium. Three protonation constants each for ligands L1 and L2 were determined and were used as input data to evaluate the formation constants of the metal complexes. Formations of metal complexes of the types FeLH3, FeLH2, FeLH, FeL and FeLH−1 were depicted in solution. Experimental evidences suggested for a formation of tris(iminophenolate) type metal complex by the ligands. The ligand L1 showed higher affinity towards iron(III) than L2. The pFe value related to L1 (pFe = 20.14) is approximately four units higher than L2 (pFe = 16.41) at pH = 7.4. The structures of the metal complexes were proposed through the molecular mechanics calculation using MM3 force field followed by semi-empirical PM3 method.  相似文献   

2.
Lanthanum(III) equilibria in the presence of adrenaline have been investigated by potentiometric titration under physiological conditions (37°C and an ionic strength of 0.15?M NaCl). The interaction of lanthanum(III) with adrenaline has also been studied using an ab initio method. The complex species in the lanthanum(III)–adrenaline system have been ascertained and the protonation constants for adrenaline and the stability constants for lanthanum(III) complexes with adrenaline have been obtained. Adrenaline can form stable lanthanum(III) complexes with the phenolic hydroxyl group of adrenaline as the binding site of lanthanum(III).  相似文献   

3.
The formation ofPAN complexes in the systemsLn(III)—PAN—alcohol-water (where:Ln(III)=Ho, Lu and alcohol=ethanol,n-propanol,iso-propanol) was investigated by a spectrophotometric method. Equilibrium constants for the reactionLn 3+ + HLLnL 2+ + H+ (HL=PAN) and stability constants of complexesLnL 2+ were calculated.
Untersuchungen zur Komplexbildung von Ho(III) und Lu(III) mit 1-(2-Pyridylazo)-2-naphthol (PAN) in alkoholisch-;wä\rigen Lösungen
Zusammenfassung Die Bildung der Komplexe vonPAN in den SystemenLn(III)—PAN—Alkohol-Wasser (Ln(III)=Ho, Lu; Alkohol=Ethanol,n-Propanol,iso-Propanol) wurde mit einer spektrophotometrischen Methode untersucht. Die Gleichgewichtskonstanten der ReaktionenLn 3+ + HLLnL 2+ + H+ (HL==PAN) und die Stabilitätskonstanten der KomplexeLnL 2+ wurden berechnet.
  相似文献   

4.
An 1H, 13C, and 15N NMR study has been completed for the complexes of La(III), Tm(III), and Yb(III) with nitrate and isothiocyanate in aqueous solvent mixtures. Signals for four complexes are observed for both the Tm3+–NO3 and Yb3+–NO3 solutions, with the species identified as the mono-, di-, tetra-, and either the penta - or hexanitrato. These results are consistent with those determined for the nitrate complexes of the Ce(III)–Eu(III) metal ions. The chemical shifts for the Tm(III) and Yb(III) nitrate complexes indicate a pseudocontact binding mechanism prevails. The complexes of diamagnetic La(III) with NO3 produce three signals in the 15NO3 spectra, with assignments paralleling those observed with the paramagnetic lanthanides. Three complexes are formed in the La3+–NCS solutions, with signals assigned to the mono-, di-, and triisothiocyanato species.  相似文献   

5.
Solvent extraction and potentiometric titration methods have been used to measure the stability constants of Cm(III), Am(III), and Eu(III) with both linear and cyclic carboxylates and polyaminocarboxylates in an ionic strength of 0.1?mol?L?1 (NaClO4). Luminescence lifetime measurements of Cm(III) and Eu(III) were used to study the change in hydration upon complexation over a range of concentrations and pH values. Aromatic carboxylates, phthalate (1,2 benzene dicarboxylates, PHA), trimesate (1,3,5 benzene tricarboxylates, TSA), pyromellitate (1,2,4,5 tetracarboxylates, PMA), hemimellitate (1,2,3 benzene tricarboxylates, HMA), and trimellitate (1,2,4 benzene tricarboxylates, TMA) form only 1?:?1 complexes, while both 1?:?1 and 1?:?2 complexes were observed with PHA. Their complexation strength follows the order: PHA~TSA>TMA>PMA>HMA. Carboxylate ligands with adjacent carboxylate groups are bidentate and replace two water molecules upon complexation, while TSA displaces 1.5 water molecules of hydration upon complexation. Only 1?:?1 complexes were observed with the macrocyclic dicarboxylates 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N′-diacetate (K21DA) and 1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N,N′-diacetate (K22DA); both 1?:?1 and 1?:?2 complexes were observed with methyleneiminodiacetate (MIDA), hydroxyethyleneiminodiacetate (HIDA), benzene-1,2-bis oxyacetate (BDODA), and ethylenediaminediacetate (EDDA), while three complexes (1?:?1, 1?:?2, and 1?:?3) were observed with pyridine 2,6 dicarboxylates (DPA) and chelidamate (CA). The complexes of M-MIDA are tridentate, while that of M-HIDA is tetradentate in both 1?:?1 and 1?:?2 complexes. The M-BDODA and M-EDDA complexes are tetradentate in the 1?:?1 and bidentate in the 1?:?2 complexes. The complexes of M-K22DA are octadentate with one water molecule of hydration, while that of K21DA is heptadentate with two water molecules of hydration. Simple polyaminocarboxylate 1,2 diaminopropanetetraacetate (PDTA) and ethylenediamine N,N′-diacetic-N,N′-dipropionate (ENDADP) like ethylenediaminetetraacetate (EDTA) form only 1?:?1 complexes and their complexes are hexadentate. Polyaminocarboxylates with additional functional groups in the ligand backbone, e.g., ethylenebis(oxyethylenenitrilo) tetraacetate (EGTA), and 1,6 diaminohexanetetraacetate (HDTA) or with additional number of groups in the carboxylate arms diethylenetriamine pentaacetato-monoamide (DTPA-MA), diethylenetriamine pentaacetato-bis-methoxyethylamide (DTPA-BMEA), and diethylenetriamine pentaacetato-bis glucosaamide (DTPA-BGAM) are octadentate with one water molecule of hydration, except N-methyl MS-325 which is heptadentate with two water molecules of hydration and HDTA which is probably dimeric with three water molecules of hydration. Macrocyclic tetraaminocarboxylate, 1,4,7,10-tetraazacyclododecanetetraacetate (DOTA) forms only 1?:?1 complex which is octadentate with one water molecule of hydration. The functionalization of these carboxylates and polycarboxylates affect the complexation ability toward metal cations. The results, in conjunction with previous results on the Eu(III) complexes, provide insight into the relation between ligand steric requirement and the hydration state of the Cm(III) and Eu(III) complexes in solution. The data are discussed in terms of ionic radii of the metal cations, cavity size, basicity, and ligand steric effects upon complexation.  相似文献   

6.
Complex formation equilibria of aluminum(III), gadolinium(III), and yttrium(III) ions with the fluoroquinolone antibacterials moxifloxacin, ofloxacin, fleroxacin, lomefloxacin, levofloxacin, and ciprofloxacin were studied in aqueous solution by potentiometric and spectroscopic methods. The identity and stability of metal–fluoroquinolone complexes were determined by analyzing potentiometric titration curves (310 K, μ = 0.15 M NaCl, pH range = 2–11, CL/CM = 1?:?1 to 3?:?1, CM = 1.0 mM) with the aid of Hyperquad2006 program. The main species formed in the system may be formulated as MpHqLr (p = 1, q = ?2 to 2, r = 1–3, L = fluoroquinolone anion, logarithm of overall stability constant, log βp,q,r = in the range ca. ?10 to 45). The stability of complexes is mostly influenced by metal ion properties (ionization potential, ionic radius) indicating partial ionic character of the coordination bond. The complexes were also characterized by spectroscopic measurements: spectrofluorimetry, 1H-NMR, and ESI-MS. Fluorimetric data were evaluated with the aid of HypSpec2014 and indicated the formation of MLr (r = 1–3) complexes with cumulative conditional stability constants significantly lower than the thermodynamic ones. NMR and MS data corroborate potentiometrically determined speciation. Calculated plasma mobilizing capacity of the ligands generally follows the order levofloxacin > moxifloxacin > ciprofloxacin at concentration levels of the ligands higher or equal to ca. 10?4 M.  相似文献   

7.
The stability constants of iron(III) complexes with nicotinamide in water-DMSO mixtures (X DMSO = 0–0.75) were determined by potentiometric titration at 25.0 ± 0.1°C and an ionic strength of 0.25 (NaClO4). The contributions from the solvation of the reagents to the Gibbs energy of complexation transfer were analyzed. The stabilities of iron(III), copper(II), and silver(I) complexes with nicotinamide were compared. The observed decrease in the stability constants was attributed to the stabilization of iron(III) solvate complexes as the DMSO content increases.  相似文献   

8.
The resonance Raman spectra of tris(acetylacetonatoiron(III)) and ruthenium(III) complexes in various solvents and in water-acetonitrile (W-AN) mixtures were measured. The resonance Raman spectra of both complexes indicated peaks near 460 and around 1580 cm–1. Thev(C-O) peak (around 1580 cm–1) is shifted to low frequency with an increase in the dielectric constant T of the solvents, whereas thev(M-O) (M=Fe and Ru, near 460 cm–1) are constant, independent of T. It implies that the C-O bond in the acac ligand is lengthened by the polarizability effect of the solvents, while both the Fe-O and Ru-O bonds, which are located in the inside of the complexes, are not influenced by the solvents indicating that the interaction does not depend on the properties of individual solvent molecules but on those of the aggregate.  相似文献   

9.
Summary Solid complexes of 3-acetyl-1,5-diaryl and 3-cyano-1,5-diaryl formazans were prepared and characterized by elemental analysis, IR, NMR, TGA and DTA analyses. Based on these studies, the suggested general formula for the complexes is [M(HL) m (OH) n or (NO 3 or Cl) x ·(H2O) y or (C2H5OH orDMSO) z , where HL=formazanM=Ce3+, Th4+, and UO 2 2+ ,m=1–2,n=0–3,x=0–3,y=0–4 andz=0–3. The metal ions are expected to have coordination numbers 6–8.
Strukturuntersuchungen an 3-Acetyl-1,5-diaryl- und 3-Cyan-1,5-diaryl-formazan-Chelaten mit Cer(III), Thorium(IV) und Uran(VI)
Zusammenfassung Die hergestellten Chelate wurden mittels Elementaranalyse, IR, NMR, TGA und DTA charakterisiert. Darauf basierend wird die generelle Formel [M(HL) m (OH) n bzw. (NO 3 oder Cl) x ·(H2O) y oder (C2H5OH bzw.DMSO) z ] vorgeschlagen, wobei HL=Formazan,M=Ce3+, Th4+ oder UO 2 2+ ,m=1–2,n=0–3,x=0–3,y=0–4 undz=0–3. Die Metallionen haben Koordinationszahlen von 6–8.
  相似文献   

10.
The preparation and some properties of the deprotonated complexes of oxamic acid with Au(III) and Rh(III) are reported. On the basis of analytical results, conductometric measurements, magnetic moments and spectral data (IR and UV-visible), a square planar structure is proposed for K[AuL(OH)2] and octahedral for K3[RhL 3] 3H2O (whereLH2=oxamic acid).L 2– acts as a bidentate, non-bridging ligand.
Komplexe der Oxamidsäure mit Au(III) und Rh(III)
Zusammenfassung Es wird über die Darstellung und einige Eigenschaften von deprotonierten Komplexen der Oxamidsäure mit Au(III) und Rh(III) berichtet. Auf der Grundlage von analytischen Ergebnissen, Leitfähigkeitsmessungen, magnetischen Momenten und IR- und UV(vis)-spektroskopischen Daten wird für K[AuL(OH)2] eine quadratisch planare und für K3[RhL 3] 3 H2O eine oktaedrische Struktur vorgeschlagen (LH2=Oxamidsäure).L 2– reagiert als zweizähniger, nicht überbrückender Ligand.
  相似文献   

11.
The oxidation of dl-ornithine monohydrochloride (OMH) by diperiodatocuprate(III) (DPC) has been investigated both in the absence and presence of ruthenium(III) catalyst in aqueous alkaline medium at a constant ionic strength of 0.20 mol dm−3 spectrophotometrically. The stiochiometry was same in both the cases, i.e., [OMH]/[DPC] = 1:4. In both the catalyzed and uncatalyzed reactions, the order of the reaction with respect to [DPC] was unity while the order with respect to [OMH] was < 1 over the concentration range studied. The rate increased with an increase in [OH] and decreased with an increase in [IO4] in both cases. The order with respect to [Ru(III)] was unity. The reaction rates revealed that Ru(III) catalyzed reaction was about eight-fold faster than the uncatalyzed reaction. The oxidation products were identified by spectral analysis. Suitable mechanisms were proposed. The reaction constants involved in the different steps of the reaction mechanisms were calculated for both cases. The catalytic constant (KC) was also calculated for catalyzed reaction at different temperatures. The activation parameters with respect to slow step of the mechanism and also the thermodynamic quantities were determined. Kinetic experiments suggest that [Cu(H2IO6)(H2O)2] is the reactive copper(III) species and [Ru(H2O)5OH]2+ is the reactive Ru(III) species.  相似文献   

12.
Summary. The kinetics of ruthenium(III) catalysed oxidation of sulfanilic acid (p-aminobenzenesulfonic acid) by hexacyanoferrate(III) in alkaline medium at a constant ionic strength of 2.5mol·dm–3 has been studied spectrophotometrically using a rapid kinetic accessory. The reaction exhibits 2:8 stoichiometry (SNA:HCF(III)). The reaction showed first order kinetics in [hexacyanoferrate(III)] and [ruthenium(III)] and apparent less than unit order in both sulfanilic acid and alkali concentrations. The reaction rate increases with increasing ionic strength but the relative permittivity (T) of the medium has a negligible effect on the rate of the reaction. Initial addition of reaction products did not affect the rate significantly. A mechanism involving the formation of a complex between sulfanilic acid and hydroxylated species of ruthenium(III) has been proposed. The active species of HCF(III) and ruthenium(III) are understood as [Fe(CN)63–] and [Ru(H2O)5OH]2+, respectively. The main products were identified by IR, NMR, and mass spectral studies. The reaction constants involved in the different steps of mechanism are calculated. The activation parameters with respect to the slow step of the mechanism are computed and discussed and thermodynamic quantities are also calculated.  相似文献   

13.
The heteropolytungstates [(Na)P5W30O110]4– (I), [(Na)Sb9W21O86]18– (II) and [(Na)As4W40O140]27– (III) and the monovacant Keggin structure of the general formula [XW11–xMoxO39]n– (X-Si, P; n = 7 for P and 8 for Si) (IV) as well as their europium(III) complexes were studied. The structures of I–IV as well as the europium(III) encrypted [(Eu)P5W30O110]12– (VI), [(Eu)Sb9W21O86]16– (VII), [(Eu)As4W40O140]25– (VIII) and sandwiched [Eu(XW11–xMoxO39)2]n– (n =11 for P and n = 13 for Si) (V) complexes were synthesized and spectroscopically characterized. The complexes were studied using UV-Vis absorption and luminescence, as well as the laser-induced europium ion luminescence spectroscopy. Absorption spectra of Nd(III) were used to characterize the complexes formed. Excitation and emission spectra of Eu(III) were obtained for solid complexes and their solutions. The relative luminescence intensities of the Eu(III) ion, expressed as the ratio of the two strongest lines at 594 nm and 615 nm, = I615/I594, which is sensitive to the environment of the primary coordination sphere about the Eu(III) ion, was calculated. In the case of the sandwiched [Eu(XW11–xMoxO39)2]n– complexes a linear dependence of the luminescence quantum yield of Eu(III) ion, , (calculated using [Ru(bpy)3]Cl2 as a standard) on the content of Mo (number of atoms, x) in the [Eu(XW11–xMoxO39)2]n– structure was observed.  相似文献   

14.
Abstract

Dedicated to Professor Arthur Martell on the occasion of his seventy fifth birthday.

The complexes of In(III) and Ga(III) with a variety of nitrogen donor ligands were studied in aqueous solution by glass electrode potentiometry at 25°C in 0.1 M NaNO3. The ligands were 2-aminomethylpyri-dine (AMPY), ethylenediamine (EN), N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine (THPED), and N,N-bis(2-hydroxyethyl)glycine (BICIN). A variety of mixed ligand complexes of the MLOH type were detected with many of the above ligands as L. The logK1 values obtained were with Ga(III) 8.40 (AMPY), 7.94 (THPED) 12.72 (EN), and In(III) 7.6 (AMPY), 8.20 (THPED), and 7.06 (BICIN). These formation constants are discussed in relation to previous predictions that In(III) and Ga(III) would have a substantial chemistry with nitrogen donor ligands. Of particular interest is the Ga(III) system with EN, where a very stable Ga(EN)3+ complex is formed, but no higher complexes except for hydrolyzed species such as Ga(EN)OH2+ and Ga(EN)(OH)2 +.  相似文献   

15.
Conductometric and potentiometric titration experiments were performed to determine the pH values of hydroxo compound formation in solutions of lanthanum(III) and holmium(III) nitrates. The instability constants of monohydroxo complexes, the solubility product constants of hydroxides, and the Gibbs energies of formation of the corresponding compounds are calculated.  相似文献   

16.
The kinetics of oxidation of atenolol (ATN) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.10 mol dm−3 was studied spectrophotometrically. The reaction between DPC and ATN in alkaline medium exhibits 1:2 stoichiometry (ATN:DPC). The reaction is of first order in [DPC] and has less than unit order in both [ATN] and [alkali]. However, the order in [ATN] and [alkali] changes from first order to zero order as their concentration increase. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreases the rate. The oxidation reaction in alkaline medium has been shown to proceed via a monoperiodatocuprate(III)–ATN complex, which decomposes slowly in a rate-determining step followed by other fast steps to give the products. The main oxidative products were identified by spot test, IR, NMR and LC–ESI-MS studies. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined.  相似文献   

17.
A method is proposed for the separation of antimony(III) (100–400 g) from bismuth(III), lead(II), gallium(III), thallium(III), tellurium(IV) and tin(IV) from an aqueous solution of pH 0.5–1.5 using 8×10–3–1×10–2 mol dm–3 cyanex 302 dissolved in toluene as an extractant. The antimony is stripped from the cyanex phase with water and determined spectrophotometrically with iodide. Various experimental parameters are optimized and the probable 13 stoichiometry of the extracted species is evaluated. The method is applicable to the analysis of alloys and pharmaceutical samples. The separation and determination take only 20 min.  相似文献   

18.
Summary Template condensation of -diketones such as 2,3-butanedione or benzil with 1,8-diamino-3,6-diazaoctane in the presence of Cr(III), Fe(III) and Co(II) results in the formation of macrocyclic complexes of the type [MLX2]X and [CoLX]X (where M=Cr(III), Fe(III), L=N4 macrocycle and X=NO 3 or Cl). The complexes have been characterized by elemental analyses, conductance and magnetic measurements, molecular weight determinations, infrared and diffuse reflectance spectral studies.
Cr(III)-, Fe(III)- und Co(II)-Komplexe mit Tetraazamacrocyclen aus 2,3-Butandion oder Benzil und 1,8-Diamino-3,6-diazaoctan
Zusammenfassung Kondensation von -Diketonenen wie 2,3-Butandion oder Benzil mit 1,8-Diamino-3,6-diazaoctan in Gegenwart von Cr(III), Fe(III) und Co(II) resultiert in der Bildung von macrocyclischen Komplexen vom Typ [MLX2]X und [CoLX]X mit M=Cr(III), Fe(III), L=N4-Macrocyclus und X=NO 3 oder Cl. Die Komplexe wurden mittels Elementaranalyse, Leitfähigkeits-und magnetischen Messungen, Molekulargewichtsbestimmung und Infrarot- bzw. diffuser Reflexions-Spektren charakterisiert.
  相似文献   

19.
A copper(II) ion-selective-electrode potentiometric method was used to determine the first and second hydrolysis constants of Cu2+. Special techniques prevented copper(II) hydroxide precipitation, and copper(II) carbonate and cipper(II) organic complexation during the titration of the experimental solution over the pH range 6.8–8.4. The large change in the total copper concentration during the titration due to adsorption of copper onto the vessel walls was accounted for by measuring the total copper concentration at each pH by atomic absorption spectrophotometry. The two hydrolysis constants were determined at 25°C in 0.7 and 0.05m NaClO4 media. The measured stability constants are independent of the copper concentration and yield similar zero ionic strength values. Also, the stepwise equilibrium constants decrease as the ligand number increases.  相似文献   

20.
Isothermal titration calorimetry (ITC) and potentiometric titration methods have been used to study the process of proton transfer in the copper(II) ion-glycylglycine reaction. The stoichiometry, conditional stability constants, and thermodynamic parameters (ΔG, ΔH, and ΔS) for the complexation reaction were determined using the ITC method. The measurements were carried out at 298.15 K in solutions with a pH of 6 and the ionic strength maintained with 100 mM NaClO4. Carrying out the measurements in buffer solutions of equal pH but different enthalpies of ionization of its components (Mes, Pipes, Cacodylate) enabled determination of the enthalpy of complex formation, independent of the enthalpy of buffer ionization. The number of protons released by glycylglycine on account of complexation of the copper(II) ions was determined from calorimetric and potentiometric measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号