首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
毛细管硅胶基质整体柱的制备及其电色谱性能研究   总被引:3,自引:0,他引:3  
邵华  邓启良  伦志红  阎超  高如瑜 《色谱》2005,23(3):243-246
采用热引发一步法制备了毛细管电色谱硅胶基质整体柱。通过使用表面活性剂(十二烷基磺酸钠)增加了反应液中两相之间的相互溶解,使得反应液最终成为均相溶液,实现了硅胶整体柱的均相聚合制备。所制备的均相硅胶整体柱内部结构更加均匀,大大提高了分离度。评价了该整体柱的电色谱性能,深入探讨了有机溶剂比例、pH值、电压以及温度等电色谱操作条件对电渗流、保留机理和柱效的影响。在该均相硅胶基质整体柱上成功地分离了9种中性物质(硫脲、苯、甲苯、乙基苯、正丙苯、萘、正丁基苯、芴和蒽)以及7种中性、酸性和碱性物质(硫脲、邻氨基酚、苯酚、苯、邻甲苯胺、α-萘胺和2,4-二氯苯胺)。该柱对硫脲的柱效超过110000塔板/m。  相似文献   

2.
以甲基丙烯酸丙酯基三甲氧基硅烷(MPTMS)为单体,甲苯为致孔剂,偶氮二异丁腈(AIBN)为引发剂,盐酸为催化剂,采用热引发法制备毛细管电色谱硅胶整体柱.在反相毛细管电色谱条件下,对中性化合物硫脲,苯,萘,芴,蒽实现了基线分离了.柱效超过100,000 plates/m.探讨了该柱的制备条件如单体比例,毛细管内径,制柱反应时间对分离的影响,并且在电色谱条件下考察了有机溶剂比例,pH值,电压和温度对分离的影响.  相似文献   

3.
甲基丙烯酸基质的毛细管电色谱整体柱的制备与应用   总被引:1,自引:0,他引:1  
以甲基丙烯酸(MAA)为功能单体,同时又作电渗流改性剂, 乙二醇二甲基丙烯酸酯(EDMA)为交联剂,甲苯和异辛烷为致孔剂,Irgacure 1800为光引发剂,采用紫外光引发原位聚合反应制备出毛细管电色谱整体柱.对影响电渗流的因素如pH、乙腈含量及离子强度等进行了讨论.使用制备的整体柱在3种模式(加压电色谱、气压驱动和电色谱)下对7种中性物质(硫脲、苯、甲苯、乙苯、萘、联苯和菲)的混合物实现基线分离,同时还可实现酸性物质(邻羟基苯甲酸、苯甲酸、苯乳酸、扁桃酸)和碱性物质(苯胺、甲苯胺、乙酰基苯胺和N-甲基苯胺)的快速分离.  相似文献   

4.
采用温和条件下的溶胶-凝胶技术,成功制备了阴离子交换-反相混合模式硅胶基质毛细管电色谱整体柱。通过调整反应液中不同前体的比例,优化了整体柱的制备条件。通过扫瞄电镜,对柱床进行了表征和分析。实验发现,所制备的整体柱电渗流的方向和大小可随流动相pH值的改变而改变,在酸性和中性条件下,具有从阴极流向阳极的电渗流;当流动相pH值升至约7.5时,电渗流方向发生了反转(由阳极流向阴极)。在优化的实验条件下,用所制备的整体柱对所考察的酸性(中性)化合物实现了快速分离,并获得了高达160,000N/m的柱效。  相似文献   

5.
毛细管整体柱的制备技术及其应用进展   总被引:1,自引:0,他引:1  
毛细管整体柱是以其制备相对简单无需烧结塞子,渗透性好,柱效高,低柱压等优点,成为目前备受关注的液相色谱固定相.它具有较好的重现性,可进行快速分离,已被应用于毛细管电色谱(CEC)和微柱高效液相色谱(μ-HPLC).本文主要介绍近几年毛细管整体柱的制备技术及其应用概况.  相似文献   

6.
毛细管电色谱具有很高的分离效率,但也存在一些缺点,如浓度检出限差、柱容量低和工作电压太高等。为了克服这些缺点,我们在2.7mm内径的石英管内用石英砂填充硅酸钾。甲酰胺聚合整体柱,并进行了电色谱分离的可行性研究。实验结果证明这种方法是可行的。它限制了热效应,可使用常规分析仪器检测,所需工作电压不超过1000V。  相似文献   

7.
整体柱的制备方法及其应用   总被引:13,自引:5,他引:13  
平贵臣  袁湘林  张维冰  张玉奎 《分析化学》2001,29(12):1464-1469
整体柱具有渗透性好、制备简单、无需塞了制作等优点,从而避免了由塞了所引起的问题,已引起人们越来越多的关注。本文对整体柱的制备方法、结构表征及其应用作一评述。  相似文献   

8.
采用温和条件下的溶胶-凝胶技术,成功制备了阴离子交换-反相混合模式硅胶基质毛细管电色谱整体柱.通过调整反应液中不同前体的比例,优化了整体柱的制备条件.通过扫瞄电镜,对柱床进行了表征和分析.实验发现,所制备的整体柱电渗流的方向和大小可随流动相pH值的改变而改变,在酸性和中性条件下,具有从阴极流向阳极的电渗流;当流动相pH值升至约7.5时,电渗流方向发生了反转(由阳极流向阴极).在优化的实验条件下,用所制备的整体柱对所考察的酸性(中性)化合物实现了快速分离,并获得了高达160,000 N/m的柱效.  相似文献   

9.
冯睿  沈敏  王明明  陈浩  曾昭睿 《分析化学》2011,39(6):827-832
合成了含有烯丙基的离子液体氯化1-烯丙基-3-甲基咪唑(AMIMCl),采用自由基聚合反应将其固定到含有乙烯基的杂化硅整体柱表面,制备了离子液体修饰的杂化硅整体柱.在酸性环境下,利用该整体柱分离了核苷酸、酚类物质和苯甲酸类化合物,与未进行修饰的整体柱相比,离子液体修饰的杂化硅整体柱的电渗流反向,分离选择性明显提高,这可...  相似文献   

10.
采用溶胶-凝胶技术制备了丁基胺丙基硅胶毛细管整体柱,此整体固定相表面同时含有能产生阳极的电渗流的仲胺官能团和产生疏水作用的正丁基和丙基官能团。对所制备的整体柱电色谱性能进行了详细的表征和分析。考察了流动相pH值对电渗流的影响;对烷基苯同系物、有机酸酸性化合物和苯胺类碱性化合物保留行为进行了研究,并对其可能的保留机理进行了探讨。实验结果表明,对于中性化合物的保留机理主要基于反相作用;而对于酸性化合物的保留行为则是基于混合模式作用机理,即除了电泳作用外,还包括阴离子交换和疏水作用。碱性化合物在丁基胺丙基硅胶毛细管整体柱上的峰形较好,没有明显的峰拖尾现象。  相似文献   

11.
A novel porous polymeric monolithic column based on poly(high internal phase emulsion) methacrylate monolith was prepared and applied to fast separation of proteins. The block copolymer chemistry of high internal phase emulsions was used in the experiment. These unique properties, together with high porosity, good mechanical property, chemical modification of the surface make themselves superior in monolithic medium applications. Morphology of the monolithic material was studied by scanning electron microscopy. The stability of the emulsion and the load of hydroxyl groups–the active group of the monolithic column were investigated. Additionally, the capabilities of separation of this column in conjunction with high performance liquid chromatography (HPLC) were investigated. Immunoglobulin was separated from human plasma and chicken egg yolk with high resolution on the hydrophobic interaction chromatographic column in a short time. The effects of pH and concentration of mobile phase (buffer) on the elution of immunoglobulin were investigated. Moreover, fast separation of a two mode protein mixture (α‐amylase and lysozyme) on the monolith was achieved within 1.5 min at a velocity of 1445 cm·h?1. As a result, good separation was achieved, and stable low back pressure drop was ensured at high throughput elution with an even longer column.  相似文献   

12.
A series of novel macroporous materials based on poly(N‐isopropylacrylamide)‐b‐sodium polyacrylate is synthesized via aqueous reversible addition‐fragmentation chain transfer polymerization in an oil‐in‐water high internal phase emulsion (HIPE) utilizing both covalent and ionic crosslinkers (PEG diacrylate and calcium diacrylate, respectively). Porosity is directly related to the calcium diacrylate content of the polyHIPE. Depth profiling XPS of pressed samples reveal the segregation of less polar substituents (PNIPAM, PEGDA) to the interface, whereas ionic components are located deeper within the continuous aqueous phase, primarily driven by ionic strength. This segregation of components stabilizes the internal‐continuous phase interface and results in decreased void diameter. Calcium diacrylate also forms ionic crosslinks in the polyHIPE material, resulting in increased interconnecting pore diameter due to volume contraction upon polymerization. Evidence of volume contraction is provided by the stress induced on PEG at the o/w interface by internally located calcium polyacrylate crosslinks, resulting in a decrease in XRD peak intensity. It is therefore proposed that calcium diacrylate is capable of modifying polyHIPE morphology via two separate mechanisms. Published 2016 1 . Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2486–2492  相似文献   

13.
PolyHIPE materials are produced by polymerizing the continuous phase of emulsions where the internal phase volume fraction is higher than 74%. Columns of flow‐through supports for immobilized scavengers and reagents were prepared by polymerizing the continuous phase of high internal phase emulsions containing 4‐vinylbenzyl chloride and divinylbenzene. Emulsions were placed in containers and polymerized in situ. Highly porous (80% pore volume) monolithic columns with chloromethyl functionalities and crosslinked with divinylbenzene (6% or 40%) were obtained and functionalized by a flow‐through method, immobilizing tris(2‐aminoethyl)amine, diethanolamine, and 4‐bromophenylboronic acid. Columns with immobilized tris(2‐aminoethyl)amine were applied for the effective removal of acid chlorides from the solution pumped through the column. Flow properties (back pressure versus flow rate) were characterized for dichloromethane, N,N‐dimethylformamide and acetonitrile. High effectiveness of columns were demonstrated by an over 90% of acid chloride removal from the solution after a single pass‐flow of the solution through the column. The morphology of the column material was characterized by scanning electron microscopy and showed no damage of the material after the flow‐through utilization. Good permeative properties of the interconnected porous structure make polyHIPE columns good candidates for supports for reagents and catalysts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6726–6734, 2009  相似文献   

14.
Polymerized high internal phase emulsions as highly porous adsorption materials have received increasing attention and wide applications in separation science in recent years due to their remarkable merits such as highly interconnected porosity, high permeability, good thermal and chemical stability, and tailorable chemistry. In this review, we attempt to introduce some strategies to utilize polymerized high internal phase emulsions for separation science, and highlight the recent advances made in the applications of polymerized high internal phase emulsions for diverse separation of small organic molecules, carbon dioxide, metal ions, proteins, and other interesting targets. Potential challenges and future perspectives for polymerized high internal phase emulsion research in the field of separation science are also speculated at the end of this review.  相似文献   

15.
In order to improve stability and reduce droplet size, the PEG-modified urethane acrylates were synthesized by the reaction of polyethylene glycol (PEG) with residual isocyanate groups of urethane acrylate to incorporate hydrophilic groups into the molecular ends. The droplet sizes of the PEG-modified urethane acrylate emulsions were much smaller than those of unmodified urethane acrylate emulsions at the same surfactant composition, and the droplet sizes of these emulsions were significantly effected not by surfactant compositions and types, but by the reaction molar ratio of PEG, because the urethane acrylate containing polyoxyethylene groups as terminal groups aided the interfacial activity of surfactant molecules and acted as a polymeric surfactant. The actions of PEG-modified urethane acrylate were confirmed by the investigation of adsorption of urethane acrylate in a water/benzene interface.For polymerization of emulsions, the stability of emulsion in the process of emulsion polymerization was changed by the type of surfactant or initiator. In the case of emulsion polymerization with a water soluble initiator (K2S2O8), the emulsions prepared using TWEEN 60 were broken in the process of polymerization. However, polymerization of these emulsions could be carried out using an oil soluble initiator (AIBN). The conversion of emulsion polymerization changed with the type of urethane acrylates, that is, the reaction molar ratio of PEG to 2-HEMA.  相似文献   

16.
Expanded polystyrene foam (EPSF), valued for its excellent insulation properties, faces a significant flammability challenge due to its cellular structure. Traditional flame retardant methods such as physical blending and layer-by-layer assembly have poor applicability to EPSF. Therefore, it is necessary to find other more effective methods for synthesizing flame-retardant EPSF. The high internal phase emulsion (HIPE) template is one of the simplest and most commonly used methods for synthesizing porous materials, which have features such as adjustable pore structures and high porosity. In this work, ammonium polyphosphate (APP)/starch was added to the dispersed phase of the HIPE to prepare the flame-retardant EPSF by one-pot method. The morphology, thermal stability and flame retardancy of the foams were investigated. When the addition of APP/starch (the weight ratio is 1:1) reached 30 wt.%, the peak heat release rate (PHRR), total heat release (THR), and total smoke release (TSR) of the composite foam decreased by 74.7%, 65.9%, and 24.7%, respectively, compared to the pure PS foam. Meanwhile, its limiting oxygen index (LOI) value reached 25.8%, and the UL-94 rating reached V-1 level, indicating significant improvement in flame retardancy. This study provides an effective strategy for synthesizing flame-retardant porous materials.  相似文献   

17.
谢晶鑫  毕开顺  钱小红  张养军 《色谱》2009,27(2):186-190
采用甲基丙烯酸月桂酯为基础功能单体,乙二醇二甲基丙烯酸酯为交联剂,正十二醇、1,4-丁二醇及二甲基亚砜为致孔剂,在内径为75 μm的石英毛细管内制备了具有良好机械性能及化学稳定性的反相毛细管整体柱。考察了致孔剂的种类、比例以及交联剂在单体混合物中的比例对柱压和分离效果的影响;以单体15%、交联剂15%、致孔剂70%(均为质量分数)作为优化配方,在70 ℃条件下反应24 h;并对所合成的毛细管整体柱进行了电镜表征,测试了流速、柱长与柱压的关系。结果表明,毛细管整体柱的通透性良好,可通过延长柱长的方法提高分离效果。将所制备的毛细管整体柱装于纳升级高效液相色谱仪上进行牛血清白蛋白及血浆样本的胰蛋白酶酶切液的分离,获得了比较理想的分离效果。  相似文献   

18.
Although amphiphilicity is an integral component for the applications of polyHIPEs (PHs), it is challenging to produce hydrophobic PHs from hydrophilic monomers. Herein, hydrophobic polyurethane (PU) PHs have been fabricated from a water‐soluble mannitol within block copolymer surfactant‐stabilized, nonaqueous high internal phase emulsions (HIPEs). These highly porous, interconnected, macroporous PU PHs were hydrophobic with water contact angles between 102° and 140°, demonstrating that water‐soluble monomers could be used for fabrication of hydrophobic PHs. The block copolymer surfactant acted not only as the HIPE stabilizer, but also as a monomer, enhancing hydrophobicity and overcoming some drawbacks imposed by conventional inert stabilizers. The solvents used for PU PH synthesis and purification were easily recovered and reused, showing that nonaqueous HIPE templating for PU PH preparation is an efficient and facile route. The PU PHs were investigated for oil spill reclamation and they were demonstrated to be an ideal candidate for such an application. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1315–1321  相似文献   

19.
A polymerized high internal phase emulsion monolith was used as a novel sorbent for solid‐phase extraction coupled with high‐performance liquid chromatography and fluorescence detection for the determination of oxytetracycline, tetracycline, doxycycline, and chlorotetracycline in environmental water samples. The polymerized high internal phase emulsion monolithic column was prepared by the in situ polymerization of the continuous phase of a high internal phase emulsion containing glycidyl methacrylate, styrene, and divinylbenzene in pipette tips, and then functionalized with iminodiacetic acid. The resulting monolith exhibited highly interconnected porosity and large surface areas, making it an excellent candidate as an solid‐phase extraction sorbent for the enrichment of trace tetracycline antibiotics. Several factors affecting the extraction performance of polymerized high internal phase emulsion monoliths, including the pH of sample solution, the eluting solvents, the sample loading flow rate and volume, were investigated, respectively. Under the optimized conditions, the mean recoveries of oxytetracycline, tetracycline, doxycycline, and chlorotetracycline spiked in pond and farm wastewater samples ranged from 78.1 to 119.3% with relative standard deviation less than 15%. The detection limits (S/N = 3) of the proposed method were in the range of 51–137 pg/mL. This study demonstrated that the monolithic polymerized high internal phase emulsion would be promising solid‐phase extraction sorbents in the extraction and proconcentration of trace analytes from complex samples.  相似文献   

20.
An acryloyl β‐cyclodextrin‐silica hybrid monolithic column for pipette tip solid‐phase extraction and high‐performance liquid chromatography determination of methyl parathion and fenthion has been prepared through a sol–gel polymerization method. The synthesis conditions, including the volume of cross‐linker and the ratio of inorganic solution to organic solution, were optimized. The prepared monolithic column was characterized by thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy. The eluent type, volume and flow rate, sample volume, flow rate, acidity, and ionic strength were optimized in detail. Under the optimized conditions, a simple and sensitive pipette tip solid‐phase extraction with high‐performance liquid chromatography method was developed for the determination of methyl parathion and fenthion in lettuce. The method yielded a linear calibration curve in the concentration ranges of 15–400 μg/kg for methyl parathion and 20–400 μg/kg for fenthion with correlation coefficients of above 0.9957. The limits of detection were 4.5 μg/kg for methyl parathion and 6.0 μg/kg for fenthion, respectively. The recoveries of methyl parathion and fenthion spiked in lettuce ranged from 96.0 to 104.2% with relative standard deviations less than 8.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号