首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linearized stability of incompressible viscous fluid flows in a thin spherical shell is studied by using the two-dimensional Navier–Stokes equations on a sphere. The stationary flow on the sphere has two singularities (a sink and a source) at the North and South poles of the sphere. We prove analytically for the linearized Navier–Stokes equations that the stationary flow is asymptotically stable. When the spherical layer is truncated between two symmetrical rings, we study eigenvalues of the linearized equations numerically by using power series solutions and show that the stationary flow remains asymptotically stable for all Reynolds numbers.   相似文献   

2.
We study a coupled system modeling the movement of a deformable solid inside a viscous incompressible fluid. For the solid we consider a given deformation which has to obey several physical constraints. The motion of the fluid is modeled by the incompressible Navier–Stokes equations in a time-dependent bounded domain of \(\mathbb {R}^3\), and the solid satisfies the Newton’s laws. Our contribution consists in adapting and completing in dimension 3, some existing results, in a framework where the regularity of the deformation of the solid is limited. We rewrite the main system in domains which do not depend on time, by using a new means of defining a change of variables, and a suitable change of unknowns. We study the corresponding linearized system before setting a local-in-time existence result. Global existence is obtained for small data, and in particular for deformations of the solid which are close to the identity.  相似文献   

3.
The onset of convection in a two-layer system heated from above and below is considered within the framework of the generalized Boussinesq approximations. In the longwave approximation an amplitude equation describing large-scale convective motions accompanied by a deformation of the interface is derived. Two types of steady-state regimes are revealed and their stability is studied.The presence of deformable interfaces and nonuniform heating can initiate instability of the fluid in the gravity field. The interaction between these mechanisms is of considerable theoretical interest. This explains the numerous publications devoted to these themes.  相似文献   

4.
This study developed generalized mathematical models to describe the motion of fluids in porous media, and applied these models to harmonic excitation applications. The problem of fluid flow in small channels of a periodic elastic solid matrix was studied at the pore scale, and the homogenization technique was applied to predict the macroscopic behavior of reservoirs. Based on the homogenization study, five separate characteristic macroscopic models were identified according to the relation between a length scale parameter and a property contrast number. These five models can be used to interpret the corresponding responses of a saturated porous medium. The relation to existing theories, such as Darcy's law, the Telegrapher's equation and Biot's theory, was investigated. The numerical results and applications are presented in Part II of the study.  相似文献   

5.
An “incompressible fluid” model in gas dynamics is developed in the linear approximation. Using the dissipative relaxation time as a characteristic scale, we arrive at another form of the dimensionless Boltzmann equation. In the limiting case of small Knudsen numbers an approximate solution is obtained in the form of a Hilbert multiple-scale asymptotic expansion. It is revealed that for slow, weakly nonisothermal processes the asymptotic expansion for the linearized Boltzmann equation leads in a first stage to equations for the velocity, pressure and temperature that do not contain the density (quasi-incompressible approximation). The density depends on the temperature and can, if necessary, be found from the equation of state. The next-approximation equations contain the Burnett effects, the velocity calculation being reduced to the general problem of finding a vector field from a given divergence and rotation. With reference to a simple case of the heating of a stationary gas in a half-space it is shown that the temperature establishment process is accompanied by gas flow from the wall.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, 2005, pp. 170–178.Original Russian Text Copyright © 2005 by Chekmarev.  相似文献   

6.
We give a predictive theory of the collisions of a viscous incompressible fluid with solids. The theory is based on interior percussions which account for the very large stresses and contact forces resulting from the kinematic incompatibilities responsible for the collision. New equation of motion and constitutive laws result from the theory. Examples dealing with a fluid colliding with its container and with a diver impacting the water of a swimming pool are studied.  相似文献   

7.
We consider here the problem of deriving rigorously from Boltzmann's equation, globally in time and for general initial conditions, fluid mechanics equations such as the Navier-Stokes or Euler equations.  相似文献   

8.
The problem of two-dimensional unsteady flow of a viscous incompressible fluid in a sector-like domain is considered. Initially a strictly radial flow is imposed, which makes it possible to seek solutions within the class of self-similar flows. A numerical method based on mixed finite-difference and spectral spatial discretization is developed, making it possible to find the self-similar solution efficiently. The process of development and establishment of the steady Hamel-Jeffery and Moffatt flows is modeled mathematically.  相似文献   

9.
10.
We consider a family of three‐dimensional shells with the same middle surface, all composed of the same nonlinearly elastic Saint Venant‐Kirchhoff material. Using the method of asymptotic expansions with the thickness as the “small” parameter, and making specific assumptions on the applied forces, the geometry of the middle surface, and the kinematic boundary conditions, we show how a “limiting”, “large‐deformation” two‐dimensional model can be identified in this fashion. By linearization, this nonlinear membrane model reduces to the linear membrane model. (Accepted January 13, 1997)  相似文献   

11.
Control problems for a steady-state model of the magnetohydrodynamics of a viscous incompressible fluid in a bounded domain with an impermeable, perfectly conducting boundary are formulated. The resolvability of the problems is studied, the use of the Lagrange principle is justified, and optimality systems are analyzed.  相似文献   

12.
可变形多孔介质中的一维非定常耦合渗流   总被引:7,自引:0,他引:7  
在Biot理论的基础上,考虑到可变形多孔介质的渗透系数依赖于孔隙变形的特点,建立了耦合渗流问题的基本方程;用初始层校正法求出了一维非定常耦合渗流问题的摄动解;实例计算表明,耦合分析与非耦合分析之间的判别较大,因此耦合效应不能忽略。  相似文献   

13.
We study parametrically excited vibrations of a shallow cylindrical panel. The mathematical model is a system of two partial differential equations based on Donnell's shallow shell theory. The original equations are discretised using Galerkin approximations and all calculations are performed through symbolic manipulations. A bifurcation analysis of a system model with two degrees of freedom is accomplished by continuation techniques. The importance of the second degree of freedom as well as some open questions concerning the modelling of shell vibrations are discussed.  相似文献   

14.
Rega  G.  Alaggio  R.  Benedettini  F. 《Nonlinear dynamics》1997,14(2):89-117
An experimental model of an elastic cable carrying eight concentrated masses and hanging at in-phase or out-of-phase vertically moving supports is considered. The system parameters are adjusted to approximately realize multiple 1:1 and 2:1 internal resonance conditions involving planar and nonplanar, symmetric and antisymmetric modes. Response measurements are made in various frequency ranges including meaningful external resonance conditions. A local analysis of the system response is made on the basis of numerous amplitude-frequency and amplitude-forcing plots obtained in different ranges of the control parameter space. Attention is mainly devoted to the detection of the main features of the regular motions exhibited by the system, and to the analysis of the relevant phenomena of nonlinear modal interaction, competition, and local bifurcation between planar and nonplanar regular responses. The resulting picture appears very rich and varied.  相似文献   

15.
The prediction of the growth of a hydraulic fracture in an oil bearing formation based on the injection rate of fluid is valuable in applications of the waterflood technique in secondary oil recovery. In this paper, the problem of hydraulic fracture growth is studied under the assumption of uniform distribution of pressure in the fracture and unidirectional permeating flow in an infinitely large isothermal linearly elastic porous medium saturated with a one-phase incompressible fluid. The condition of plane strain is imposed in the study. A comparison of the constant fracture toughness criterion based on the asymptotic value for large crack growth with the crack tip ductility criterion for an ideally plastic solid under plane strain and small-scale yielding conditions indicates that the effect of ductility of rock on the crack growth is so small that the steady state value of the energy release rate can be reached within a short period of crack growth. Thus we can employ the constant fracture toughness criterion in our study. The analysis includes the effects of both fracture volume increase and leak-off of fluid from the surface of the fracture. A nonlinear singular integro-differential equation can be formulated for the quasi-static hydraulic fracture growth under a prescribed injection rate. It is solved numerically by a modified fourth order Runge-Kutta method.  相似文献   

16.
17.
We investigate the fully developed flow in a fluid-saturated porous medium channel with an electrically conducting fluid under the action of a parallel Lorentz force. The Lorentz force varies exponentially in the vertical direction due to low fluid electrical conductivity and the special arrangement of the magnetic and electric fields at the lower plate. Exact analytical solutions are derived for fluid velocity and the results are presented in figures. All these flows are new and are presented for the first time in the literature.  相似文献   

18.
We present an analysis for the process of fluid infiltration into a deformable, thin and permeable web that moves in close proximity over a rigid and stationary solid cylinder. While this is a process of significant interest in a range of coating, printing and composites pultrusion processes, its hydrodynamics have received limited attention in the open literature. The flow in the film separating the web from the cylinder is described by lubrication theory, while fluid transfer into the web is governed by Darcy’s law. The deformation of the web at each position is a linear function of the local gap pressure; this is consistent with the assumption of a thin and rigidly supported web. Our results indicate that the web/fluid interface is forced away from the cylinder surface as it approaches it and bounces back downstream from the minimum separation point. This behavior produces a non-symmetric gap between the adjacent surfaces, and this is shown to have critical influence on the final amount of penetrating fluid. The extent of fluid penetration is also found to be affected by the web elasticity (expressed by the dimensionless Ne number) and permeability (expressed in dimensionless form via \(\hat{{K}})\) where under a specific Ne and \(\hat{{K}}\) combination a maximum penetration depth is obtained. Finally, we derive a closed-form asymptotic solution for the final infiltration depth in the limit of Ne \(<<\) 1 and \(\hat{{K}}<<\)1 and test its predictions against the above-mentioned numerical results.  相似文献   

19.
We study the stability of a rigid body in a steady rotational flow of an inviscid incompressible fluid. We consider the two-dimensional problem: a body is an infinite cylinder with arbitrary cross section moving perpendicularly to its axis, a flow is two-dimensional, i.e., it does not depend on the coordinate along the axis of a cylinder; both body and fluid are in a two-dimensional bounded domain with an arbitrary smooth boundary. Arnold's method is exploited to obtain sufficient conditions for linear stability of an equilibrium of a body in a steady rotational flow. We first establish a new energy-type variational principle which is a natural generalization of the well-known Arnold's result (1965a, 1966) to the system “body + fluid.” Then, by Arnold's technique, a general sufficient condition for linear stability is obtained. Received 21 February 1997 and accepted 23 June 1997  相似文献   

20.
Adiletta  G.  Guido  A. R.  Rossi  C. 《Nonlinear dynamics》1997,14(1):57-87
The dynamic behaviour of a rigid rotor supported on plain journal bearings was studied, focusing particular attention on its nonlinear aspects. Under the hypothesis that the motion of the rotor mass center is plane, the rotor has five Lagrangian co-ordinates which are represented by the co-ordinates of the mass center and the three angular co-ordinates needed to express the rotor's rotation with respect to its center of mass. In such conditions, the system is characterised not only by the nonlinearity of the bearings but also by the nonlinearity due to the trigonometric functions of the three assigned angular co-ordinates. However, if two angular co-ordinates have values that are generally quite small because of the small radial clearances in the bearings, the system is de facto linear in these angular co-ordinates. Moreover, if the third angular co-ordinate is assumed to be cyclic [18], the number of degrees of freedom in the system is reduced to four and nonlinearity depends solely on the presence of the journal bearings, whose reactions were predicted with the -film, short bearing model. After writing the equations of motion in this way and determining a numerical routine for a Runge–Kutta integration the most significant aspects of the dynamics of a symmetrical rotor were studied, in the presence of either pure static or pure couple unbalance and also when both types of unbalance were present. Two categories of rotors, whose motion is prevailingly a cylindrical whirl or a conical whirl, were put under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号