首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motion of the moonlet Dactyl in the binary system 243 Ida is investigated in this paper. First, periodic orbits in the vicinity of the primary are calculated, including the orbits around the equilibrium points and large-scale orbits. The Floquet multipliers' topological cases of periodic orbits are calculated to study the orbits' stabilities. During the continuation of the retrograde near-circular orbits near the equatorial plane, two period-doubling bifurcations and one Neimark–Sacker bifurcation occur one by one, leading to two stable regions and two unstable regions. Bifurcations occur at the boundaries of these regions. Periodic orbits in the stable regions are all stable, but in the unstable regions are all unstable. Moreover, many quasi-periodic orbits exist near the equatorial plane. Long-term integration indicates that a particle in a quasi-periodic orbit runs in a space like a tire. Quasi-periodic orbits in different regions have different styles of motion indicated by the Poincare sections. There is the possibility that moonlet Dactyl is in a quasi-periodic orbit near the stable region I, which is enlightening for the stability of the binary system.  相似文献   

2.
We investigate the bifurcation of artificial halo orbits from the Lyapunov planar family of periodic orbits around the collinear libration points of the circular, spatial, restricted three-body problem. Beside the gravitational forces, our model includes also the effect of the Solar Radiation Pressure (SRP) and this motivates the use of the term ‘artificial’ halo orbits. Indeed, as a typical problem, one may think of a solar sail, which is characterized by a performance parameter measuring the strength of the effect of the SRP on the spacecraft.To settle the model, we determine the position of the collinear points as a function of the mass and performance parameters and the energy values at which Hill׳s surfaces allow for transit orbits between the primaries. To analyze the dynamics we use a consolidated procedure which consists in the computation of a resonant normal form, allowing the reduction to the center manifold and providing an integrable approximation of the Hamiltonian dynamical system. Finally, we compute the bifurcation thresholds of the 1:1 resonant periodic orbit families (which have the standard ‘halo’ orbits as their first member) as a function of the performance and mass parameters.The results show that SRP is indeed a relevant ingredient for new dynamical features and must definitely be considered when planning a mission of a solar sail with trajectories in the neighborhoods of collinear points.  相似文献   

3.
In this paper we consider the orbital dynamics of a solar sail in the Earth-Sun circular restricted three-body problem. The equations of motion of the sail are given by a set of non-linear autonomous ordinary differential equations, which are non-conservative due to the non-central nature of the force on the sail. We consider first the equilibria and linearisation of the system, then examine the non-linear system paying particular attention to its periodic solutions and invariant manifolds. Interestingly, we find there are equilibria admitting homoclinic paths where the stable and unstable invariant manifolds are identical. What is more, we find that periodic orbits about these equilibria also admit homoclinic paths; in fact the entire unstable invariant manifold winds off the periodic orbit, only to wind back onto it in the future. This unexpected result shows that periodic orbits may inherit the homoclinic nature of the point about which they are described.  相似文献   

4.
Coupled trajectory and attitude stability of displaced solar orbits is studied by using sailcraft with a kind of two-folding construction with two unequal rectangular plates forming a right angle. Three-dimensional coupled trajectory and attitude equations are developed for the coupled dynamical system, and the results show that all three types of displaced solar orbits widely referenced can be achieved through selecting an appropriate size of the two-folding sail. An anal- ysis of the corresponding linear stability of the trajectory and attitude coupled system is carried out, and both trajectory and attitude linearly stable orbits are found to exist in a small range of parameters, whose non-linear stability is then examined via numerical simulations. Finally, passively stable orbits are found to have weak stability, and such passive means of station-keeping are attractive and useful in practice because of its simplicity.  相似文献   

5.
The high performance solar sail can enable fast missions to the outer solar system and produce exotic non-Keplerian orbits. As there is no fuel consumption, mission trajectories for solar sail spacecraft are typically optimized with respect to flight time. Several investigations focused on interstellar probe missions have been made, including optimal methods and new objective functions. Two modes of interstellar mission trajectories, namely “direct flyby” and “angular momentum reversal trajectory”, are compared and discussed. As a foundation, a 3D non-dimensional dynamic model for an ideal plane solar sail is introduced as well as an optimal control framework. A newly found periodic double angular momentum reversal trajectory is presented, and some properties and potential applications of this kind of inverse orbits are illustrated. The method how to achieve the minimum periodic inverse orbit is also briefly elucidated.  相似文献   

6.
条带式太阳帆的结构动力学分析   总被引:1,自引:0,他引:1  
张军徽  崔洋洋  佟安 《力学学报》2019,51(1):237-244
依靠光压推进,太阳帆被认为是最可行的星际探测航天器,太阳帆结构总体方案主要有两类:桅杆式和旋转式,其中,帆膜被分割成窄条的条带式太阳帆在桅杆式太阳帆中具有较为理想的结构效率,如何准确计算条带式太阳帆的结构动力学特性值得研究.本文对条带式太阳帆结构的振动特性和结构稳定性进行研究,将太阳帆看作是由若干个桅杆-膜带组件依次连接而成的整体结构,桅杆-膜带组件由4根桅杆段和4条薄膜条带组成,分段轴压作用下的桅杆与薄膜条带耦合振动.考虑帆面薄膜条带与支撑桅杆之间的耦合振动,采用分布传递函数法建立了的条带式太阳帆的结构动力学模型,推导了条带式太阳帆结构自由振动和失稳载荷的求解方法.研究表明:条带式太阳帆构型有利于提高太阳帆结构的整体刚度和结构稳定性,随着帆面薄膜条带数目的增加,太阳帆结构的振动频率和失稳载荷增大;随着帆面薄膜预应力的增大,太阳帆结构振动的基频减小,稳定性变差;随着支撑桅杆刚度的提高,太阳帆结构整体的振动频率和失稳载荷增大.本文建立的解析求解方法具有求解效率快和精度高的特点,为条带式太阳帆的结构设计和姿态控制提供了有力的分析工具.   相似文献   

7.
We study a model for the lateral propagation of a combustion front through a porous medium with two parallel layers having different properties. The reaction involves oxygen and a solid fuel. In each layer, the model consists of a nonlinear reaction–diffusion–convection system, derived from balance equations and Darcy’s law. Under an incompressibility assumption, we obtain a simple model whose variables are temperature and unburned fuel concentration in each layer. The model includes heat transfer between the layers. We find a family of traveling wave solutions, depending on the heat transfer coefficient and other system parameters, that connect a burned state behind the combustion front to an unburned state ahead of it. These traveling waves are strong: they correspond to connecting orbits of a system of five ordinary differential equations that lie in the unstable manifold of a hyperbolic saddle and the stable manifold of a nonhyperbolic equilibrium. We argue that for physically relevant initial conditions, traveling waves that correspond to connecting orbits that approach the nonhyperbolic equilibrium along its center direction do not occur. When the heat transfer coefficient is small, we prove that strong traveling waves exist for a small range of system parameters, near parameter values where the two layers individually admit strong traveling waves with the same speed. When the heat transfer coefficient is large, we prove that strong traveling waves exist for a very large range of parameters. For small heat transfer, combustion typically does not occur simultaneously in the two layers; for large heat transfer, it does. The proofs use geometric singular perturbation theory. We give a numerical method to solve the nonlinear problem, and we present numerical simulations that indicate that the traveling waves we have found are in fact the dominant feature of solutions.  相似文献   

8.
We study 2×2 systems of hyperbolic conservation laws near an umbilic point. These systems have Undercompressive shock wave solutions, i.e., solutions whose viscous profiles are represented by saddle connections in an associated family of planar vector fields. Previous studies near umbilic points have assumed that the flux function is a quadratic polynomial, in which case saddle connections lie on invariant lines. We drop this assumption and study saddle connections using Golubitsky-Schaeffer equilibrium bifurcation theory and the Melnikov integral, which detects the breaking of heteroclinic orbits. The resulting information is used to construct solutions of Riemann problems.  相似文献   

9.
This paper considers nonlinear dynamics of tethered three-body formation system with their centre of mass staying on a circular orbit around the Earth, and applies the theory of space manifold dynamics to deal with the nonlinear dynamical behaviors of the equilibrium configurations of the system. Compared with the classical circular restricted three body system, sixteen equilibrium configurations are obtained globally from the geometry of pseudo-potential energy surface, four of which were omitted in the previous research. The periodic Lyapunov orbits and their invariant manifolds near the hyperbolic equilibria are presented, and an iteration procedure for identifying Lyapunov orbit is proposed based on the differential correction algorithm. The non-transversal intersections between invariant manifolds are addressed to generate homoclinic and heteroclinic trajectories between the Lyapunov orbits. (3,3)and (2,1)-heteroclinic trajectories from the neighborhood of one collinear equilibrium to that of another one, and (3,6)and (2,1)-homoclinic trajectories from and to the neighborhood of the same equilibrium, are obtained based on the Poincaré mapping technique.  相似文献   

10.
The attitude dynamics and control for solar sail orbiting a celestial body (e.g., the Earth) are critical for the space missions. In the paper, the pitch dynamics is addressed by considering the torques by the center-of-mass and center-of-pressure offset, the gravity gradient, the internal damping and the control vane. The chaotic pitch motion is analytically detected for the sailcraft in the circular and elliptical orbits with small eccentricities using the Melnikov’s method. The validity of the Melnikov method is numerically verified by checking the Poincare surface of section and the power spectral density. The stability criterion method with some improvements is utilized to stabilize the chaotic pitch motion onto the reference unstable periodic motion embedded in the chaotic attractor. The reference unstable periodic motion is obtained based on the calculation of the close return pairs. The small control input torques and the stabilization effects are presented, and the advantages of the modified stabilization method are clarified based on the numerical simulations.  相似文献   

11.
In this paper, using the local coordinate moving frame approach, we investigate bifurcations of generic heteroclinic loop with a hyperbolic equilibrium and a nonhyperbolic equilibrium which undergoes a pitchfork bifurcation. Under some generic hypotheses, the existence of homoclinic loop, heteroclinic loop, periodic orbit and three or four heteroclinic orbits is obtained. In addition, the non-coexistence conditions for homoclinic loop and periodic orbit are also given. Note that the results achieved here can be extended to higher dimensional systems.  相似文献   

12.
A general theorem that guarantees the existence of an orbit connecting two hyperbolic equilibria of a parametrized autonomous differential equation in \({\mathbb {R}}^n\) near a suitable approximate connecting orbit given the invertibility of a certain explicitly given matrix is proved. Numerical implementation of the theorem is described using five examples including two Sil’nikov saddle-focus homoclinic orbits and a Sil’nikov saddle-focus heteroclinic cycle.  相似文献   

13.
Feng  Z. C.  Liew  K. M. 《Nonlinear dynamics》2000,21(3):249-263
In this work we study the existence of Silnikov homoclinicorbits in the averaged equations representing the modal interactionsbetween two modes with zero-to-one internal resonance. The fast mode isparametrically excited near its resonance frequency by a periodicforcing. The slow mode is coupled to the fast mode when the amplitude ofthe fast mode reaches a critical value so that the equilibrium of theslow mode loses stability. Using the analytical solutions of anunperturbed integrable Hamiltonian system, we evaluate a generalizedMelnikov function which measures the separation of the stable and theunstable manifolds of an annulus containing the resonance band of thefast mode. This Melnikov function is used together with the informationof the resonances of the fast mode to predict the region of physicalparameters for the existence of Silnikov homoclinic orbits.  相似文献   

14.
Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluc-tuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratiodependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation.  相似文献   

15.
The problem of determining the transmission coefficient of thin-film materials of large-size convertible space structures depending on the value of their deformation is considered. A technique is presented for determining the transmission coefficient in the apparent and near infrared and ultraviolet ranges of lengths of electromagnetic waves depending on the value of the longitudinal strain in the uniaxial extension of the thin-film material specimen. The results of experiments with the polyethyleneterephthalate (PETPh) aluminum-backed film showed that the normal integral transmission coefficient can vary in broad limits and its significant growth begins as the longitudinal strain is greater than 10%. A numerical example shows that a decrease in the deflection of the end point of the nonideal solar sail results in a variation in the propulsive force. This, in turn, affects the ballistic parameters of the solar sail.  相似文献   

16.
以空间太阳帆塔在轨运行中遇到的强耦合动力学问题为研究背景,建立了空间刚性杆-- 弹簧组合结构轨道与姿态耦合 问题的动力学模型,采用辛 (几何) 算法研究了其轨道与姿态耦合的动力学行为,研究结果可以从系统的能量保持情况间接得到验 证. 首先,基于变分原理,通过引入对偶变量将描述空间刚性杆-- 弹簧组合结构动力学行为的拉格朗日方程导入哈 密尔顿体系,建立简化模型的正则控制方程;随后,采用辛龙格库塔方法模拟分析了地球非球摄动对轨道、姿态的影响及系统能 量的数值偏差问题. 数值模拟结果显示:随着初始姿态角速度增大,轨道半径的扰动 增大,轨道与姿态之间的耦合效应加剧; 带谐摄动对空间刚性杆-- 弹簧组合结构模型的轨道、姿态产生的影响比田谐摄动要高出至少两个数量级;同时辛龙格库塔方法能更好 地快速模拟地球非球摄动影响下空间刚性杆-- 弹簧组合结构的动力学行为,并能够长时间保持系统的总能量,有望为 超大空间结构实时反馈控制提供实时动力学响应结果.   相似文献   

17.
In this paper,we investigate the equilibrium stability of a Filippov-type system having multiple stick regions based upon a smooth and discontinuous(SD) oscillator with dry friction.The sets of equilibrium states of the system are analyzed together with Coulomb friction conditions in both( f_n,f_s) and(x,˙x) planes.In the stability analysis,Lyapunov functions are constructed to derive the instability for the equilibrium set of the hyperbolic type and La Salle's invariance principle is employed to obtain the stability of the nonhyperbolic type.Analysis demonstrates the existence of a thick stable manifold and the interior stability of the hyperbolic equilibrium set due to the attractive sliding mode of the Filippov property,and also shows that the unstable manifolds of the hyperbolic-type are that of the endpoints with their saddle property.Numerical calculations show a good agreement with the theoretical analysis and an excellent efficien y of the approach for equilibrium states in this particular Filippov system.Furthermore,the equilibrium bifurcations are presented to demonstrate the transition between the smooth and the discontinuous regimes.  相似文献   

18.
19.
In this paper, the limit case of the SD (smooth and discontinuous) oscillator is studied. This system exhibits standard dynamics governed by the hyperbolic structure associated with the stationary state of the double-well. The substantial deviation from the standard dynamics is the non-smoothness of the velocity in crossing from one well to another, caused by the loss of local hyperbolicity due to the discontinuity. Without dissipation, the KAM structure on the Poincaré section is constructed with generic KAM curves and a series of fixed points associated with surrounded islands of quasi-periodic orbits and the chaotic connection orbits. It is found that, for a fixed set of parameters, a special chaotic orbit exits there which fills a finite region and connects a series of islands dominated by different chains of fixed points. As one adds weak dissipation, the periodic solutions in this finite region remain unchanged while the quasi-periodic solutions (isolated islands) are converted to the corresponding periodic solutions. The relevant dynamics for the system with weak dissipation under external excitation is shown having period doubling bifurcation leading to chaos, and multi-stable solutions.  相似文献   

20.
Transversality of stable and unstable manifolds of hyperbolic periodic trajectories is proved for monotone cyclic systems with negative feedback. Such systems in general are not in the category of monotone dynamical systems in the sense of Hirsch. Our main tool utilized in the proofs is the so-called cone of high rank. We further show that stable and unstable manifolds between a hyperbolic equilibrium and a hyperbolic periodic trajectory, or between two hyperbolic equilibria with different dimensional unstable manifolds also intersect transversely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号