首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The absorption and emission spectra of two coumarins namely 7, 8 benzo-4-azidomethyl coumarin (C1) and 6-methoxy-4-azidomethyl coumarin (C2) have been recorded at room temperature in solvents of different polarities. The ground state dipole moments (μ g ) of two coumarins were determined experimentally by Guggenheim method. The exited state (μ e ) dipole moments were estimated from Lippert’s, Bakhshievs and Chamma-Viallet’s equations by using the variation of Stoke’s shift with the solvent dielectric constant and refractive index. The ground and excited state dipole moments were calculated by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was observed that dipole moments of excited state were higher than those of the ground state, indicating a substantial redistribution of the π-electron densities in a more polar excited state for two coumarins.  相似文献   

2.
2-(p-N,N-dimethylaminostyryl)benzoxazole (OS), 2-(p-N,N-dimethylaminostyryl)-benzothiazole (SS) and 2-(p-N,N-dimethylaminostyryl)naphtiazole (PS) were prepared and their absorption and fluorescence spectra were measured in various solvents at room temperature. On the basis of the solvatochromic behavior the ground state (μg) and excited state (μe) dipole moments of these pN,N-dimethylaminostyryl derivatives were evaluated. The dipole moments (μg and μe) were estimated from solvatochromic shifts of absorption and fluorescence spectra as function of the dielectric constant (ɛ) and refractive index (n) of applied solvents. The absorption spectra only slightly are affected by the solvent polarity in contrast to the fluorescence spectra that are highly solvatochromic and display a large Stokes shift. The analysis of the solvatochromic behavior of the fluorescence spectra as function of Δf (ɛ, n) revealed that the emission occurs from a high polarity excited state. The large dipole moment change along with the strongly red-shifted fluorescence, as the solvent polarity is increased, demonstrate the formation of an intramolecular charge transfer state (ICT). Compounds under the study were used as fluorescence probes for monitoring the kinetics of polymerization. The study on the changes in fluorescence intensity and spectroscopic shifts of studied compounds were carried out during thermally initiated polymerization of methyl methacrylate (MMA) and during photoinitiated polymerization of 2-ethyl-2-(hydroxymethyl)propane-1,3-diol triacrylate (TMPTA).  相似文献   

3.
The absorption and fluorescence spectra of three Carboxamides namely (E)-2-(4-Chlorobenzylideneamino)-N-(2-chlorophenyl)-4, 5, 6, 7-tetrahydrobenzo[b]thiophene-3-carboxamide (C1), (E)-N-(3-Chlorophenyl)-2-(3, 4-dimethoxybenzylideneamino)-4, 5, 6, 7-tetrahydrobenzo[b]thiophene-3-carboxamide (C2) and (E)-N-(3-Chlorophenyl)-2-(3, 4, 5-trimethoxybenzylideneamino)-4, 5, 6, 7-tetrahydrobenzo[b]thiophene-3-carboxamide (C3) have been recorded at room temperature in solvents of different polarities using dielectric constant (ε) and refractive index (n). Experimental ground (μg) and excited (μe) state dipole moments are estimated by means of solvatochromic shift method and also the excited dipole moments are estimated in combination with ground state dipole moments. It was estimated that dipole moments of the excited state were higher than those of the ground state of all three molecules. Further, the changes in dipole moment (Dm \Delta \mu ) were calculated both from solvatochromic shift method and on the basis of microscopic empirical solvent polarity parameter (ETN E_T^N ) and the values are compared.  相似文献   

4.
The Fluorescence spectroscopic and solvatochromic behavior of Sulfisoxazole, a sulfa drug with antimicrobial activities, in various pure solvents of different polarity and hydrogen bonding capability is reported. The fluorescence emission spectrum of sulfisoxazole was found to be solvent polarity dependent, where a notable red shift in emission maximum was observed with increasing solvent polarity as well as hydrogen bonding capability. The effects of the latter two solvent parameters were quantitatively investigated using the methods of Lippert–Mataga and solvatochromic comparison method (SCM) that is based on the Kamlet-Taft equation. Particularly, the Lippert–Mataga method was applied to estimate the dipole moment of the excited state (μe) upon plotting Stokes shift versus solvent polarizability (Δf), where a value of 11.54 Debye was obtained. On the other hand, applying the multiple regression analysis to the SCM method revealed that solvent polarizability (π*) and hydrogen-bond donor capability (α) approximately equally stabilize sulfisoxazole in the excited state with minor destabilization contribution by the hydrogen-bond acceptor capability (β). These findings revealed that the excited state of sulfisoxazole is stabilized by polar solvents, indicating that this drug molecules exhibit larger dipole moment in the excited state than in the ground state, which in turn implies that a potential intramolecular charge transfer (ICT) occurs after excitation.  相似文献   

5.
Photo induced excited state dynamical processes of cinchonine alkaloid dication (C++) have been studied over a wide range of temperature using steady state and nanosecond time-resolved fluorescence spectroscopic techniques. The temperature-dependent fluorescence studies of C++ clearly indicate the existence of two distinct emitting species having their own characteristic decay rates. The shorter-lived species shows a usual temperature dependence with increasing non-radiative deactivation at higher temperatures, while the longer-lived species show features resembling to the excited state solvent relaxation process with a large solvent relaxation time (τ r ∼ 6 ns). The species emitting in the lower energy side, having longer decay time is found to be more sensitive towards chloride ion quenching and has a charge transfer character. Further, concentration quenching with decrease in τ r of long lived species shows the possibility of energy migration along with solvent relaxation in C++.  相似文献   

6.
Novel imidazole derivatives were synthesized and its crystal structure has been studied by single crystal XRD analysis. The photophysical properties of these imidazole derivatives were studied in several solvents, which include a wide range of apolar, polar and protic media. The observed lower fluorescence quantum yield may be due to an increase in the non-radiative deactivation rate constant. This is attributed to a loss of planarity in the excited state provided by the non co-planarity of the aryl rings attached to C(2) and N(1) atoms of the imidazole ring. Such a geometrical change in the excited state leads to an important Stokes shift, reducing the reabsorption and reemission effects in the detected emission in highly concentrated solutions. The highest fluorescence quantum yield of the imidazole derivatives are observed in polar media.  相似文献   

7.
Electronic absorption and fluorescence emission spectra of DMDMAQ (1,4-dimethoxy-2,3-dimethyl-9,10-anthraquinone) have been studied as a function of solvent composition in some binary mixtures and in different neat solvents. The binary mixtures consist CCl4 (Carbon tetrachloride)-DMSO (Dimethylsulfoxide), EtOH (Ethanol)-DMSO, and CCl4-EtOH combination of single solvents. The wavelength maxima of the absorption band for DMDMAQ are quite solvent sensitive in aprotic solvents. But, in protic solvent, there is no marked shift in absorption and emission maximum which shows the absence of specific interaction. Excited state shows increasing shift with increasing solvent polarity compared to ground state. The ratio of dipole moment in the excited state to that in the ground state was calculated. Different criteria were considered to analyse preferential solvation characteristics in different binary mixtures, viz., local mole fraction (), solvation index (δS2) and exchange constant (K12).  相似文献   

8.
The absorption and fluorescence of substituted distyrylbenzene (DSB) derivatives and segmented poly(phenylene vinylene) (PPV) derivatives are characterized by long-wavelength absorption maxima and absorption coefficients of λa = 380–450 nm, ε = 20,000–60,000 M−1 cm1 and fluorescence maxima, quantum yields, and decay times of λr = 440–530 nm, Φf = 0.2–0.9, and Τ = 0.8–2.5 ns, respectively. Alkoxy substituents at the central phenylene ring of DSB groups increase the bathochromic shift in the spectra in comparison to DSB, without a significant decrease in the high DSB fluorescence quantum yield. Both phenyl and cyano substitutions at the vinylene bridge lead to a further bathochromic shift of the fluorescence and a decrease in the quantum yield to ca. 0.4. The DSB derivatives and the related segmented PPV derivatives show nearly the same absorption spectra, fluorescence spectra, and radiative rate constantsk f= Φf/Τ, indicating the efficacy of the segmentation of the polymer chain. The radiative rate constants determined by the Φf and Τ values and by the Strickler/Berg formula are in reasonable agreement. This supports the possibility of interpreting the properties of the polymers in terms of their DSB units. The decrease in the emission anisotropy can be ascribed to multistep energy transfer processes between different oriented segments.  相似文献   

9.
The photophysical properties of a series of 3-(1′H-Indol-3′-yl)-1-phenylprop-2-en-1-one and its derivatives (indole chalcones) were studied in different solvents. Solvent effects on the absorption and fluorescence spectra were quantified using Reichardt’s and bulk solvent polarity parameters and were complemented by the results of the Kamlet-Taft treatment. The observed excited state dipole moment was found to be larger than the ground state dipole moment of these chalcones. The correlation of the solvatochromic Stokes-shifts with the microscopic solvent polarity parameter (ETN E_T^N ) was found to be superior to that obtained using bulk solvent polarity functions.  相似文献   

10.
In this article, a series of Hantzsch 1,4‐dihydropyridines with different substituted aryl groups were synthesized and its spectral data obtained by UV–Vis absorption and fluorescence emission spectroscopies in solution. The dihydropyridines present absorption located around 350 nm and fluorescence emission in the blue–green region. A higher Stokes’ shift could be observed for the derivative 3b because of an intramolecular charge transfer in the excited state from the dimethylaniline to the dihydropyridine chromophores, which was corroborated by a linear relation of the fluorescence maxima (νmax) versus the solvent polarity function (Δf) from the Lippert–Mataga correlation. A comparison between the experimental data and time‐dependent density functional theory‐polarizable continuum model calculations of the vertical transitions was performed to help on the elucidation of the photophysics of these compounds. For these calculations, the S0 and S1 states were optimized using Becke, three‐parameter, Lee–Yang–Parr/6‐31 G* and Configuration Interaction Singles/6‐31 G*, respectively. The predicted absorption maxima are in good agreement with the experimental; however, the theoretical fluorescence emission maxima do not match the experimental, which means that the excited specie cannot be related to neither a locally excited state nor to an aromatized structure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The short‐time structural dynamics of 4‐formaldehyde imidazole and imidazole in light absorbing S2(ππ*) state were studied by using resonance Raman spectroscopy and quantum mechanical calculations. The vibrational spectra and ultraviolet absorption spectra of 4‐formaldehyde imidazole were assigned. The resonance Raman spectra of imidazole and 4‐formaldehyde imidazole were obtained in methanol and acetonitrile with excitation wavelengths in resonance with the first intense absorption band to probe the short‐time structural dynamics. complete active space self‐consistent field calculations were carried out to determine the minimal singlet excitation energies and structures of S1(nπ*), S2(ππ*), and conical intersection point S1(nπ*)/S2(ππ*). The results show that the A‐band structural dynamics of imidazole is predominantly along the N1H/C4H/C5H/C2H in‐plane bending reaction coordinate, which suggests that excited state proton or hydrogen transfer reaction takes place somewhere nearby the Franck–Condon region. The significant difference in the short‐time structural dynamics between 4‐formaldehyde imidazole and imidazole is observed, and the underlying mechanism is interpreted in term of excited state charge redistribution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Editorial     
The solvent effects on the electronic absorption and emission fluorescence spectra for a series of chalcone cyclic analogues were studied. The singlet-state excited dipole moments and the ground state dipole moments of the cyclic chalcone analogues E-2- benzylidene-1-benzosuberone E-2-(4′-methoxybenzylidene)-1-benzosuberone E-2-(4′-dimethylaminobenzylidene)-1-benzosuberone were calculated by using solvatochromic shift method by means of equations using the variations of Stokes’ shift with the solvent's dielectric constant and refractive index values. It was found that the excited state dipole moments calculated by the solvatochromic shift method were greater than the ground state dipole moments indicating a substantial redistribution of the pi-electron densities in a more polar excited state for each derivative.  相似文献   

13.
Influence of the solvent environments, pumping pulse energies and concentrations on the spectral properties of 1,2,3,8-tetrahydro-1,2,3,3,5-pentamethyl-7H-pyrrolo[3,2-g]quinolin-7-one (LD-423) have been investigated. The photophysical characteristics such as absorption, fluorescence spectra, Stokes’ shift, fluorescence quantum yield, absorption, emission cross sections, extinction coefficient and amplified spontaneous emission (ASE) were measured. Here, LD-423 showed two ASE in a certain organic solution under pulsed laser excitation (Nd: YAG λex?=?355 nm). One of these peaks corresponds to the fluorescence, while the other peak is an anomalous peak which does not have a corresponding fluorescence peak. This abnormal ASE peak can be ascribed to the fact that the excited molecules are connected in the excited state and the solvent acts as a link between them.  相似文献   

14.
We have obtained and analyzed the absorption, fluorescence, and fluorescence excitation spectra of indole vapor, N-acetyl-L-tryptophan vapor, and 3-indole aldehyde vapor. From analysis of the dependence of the fluorescence spectrum of the free indole molecules on the wavelength of the exciting radiation λex, it follows that emission of fluorescence occurs when the molecules undergo a transition from the one electronically excited state 1Lb. The fluorescence spectra of the studied compounds are insignificantly different, suggesting a major role for the indole chromophore in formation of the compounds. The absorption spectrum of N-acetyl-L-tryptophan, in which the group of atoms is added to the indole ring through a-C-C bond, is similar to the spectrum of indole, while the spectrum of 3-indole aldehyde is significantly different from the indole spectrum due to the effect of the C=O group conjugated with the indole ring. The fluorescence excitation spectra are considerably different from the absorption spectra. This is associated with the strong dependence of the quantum yield for the free molecules on λex. Qualitatively, they are mirror-symmetric to the fluorescence spectra of the stodied compounds. Analysis of the data obtained provides a basis for assuming that in the case of free molecules of indole and its derivatives, the 1La absorption in the extreme long-wavelength region of the spectrum does not overlap 1Lb absorption. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 2, pp. 218–222, March–April, 2007.  相似文献   

15.
A novel water-soluble solvatochromic molecule, 7-(dimethylamino)-2-fluorenesulfonate (2,7-DAFS), was prepared by a three-step reaction from 2-nitrofluorene in good overall yield. The pH and solvent effects on the UV-VIS absorption and fluorescence spectra of 2,7-DAFS have been studied. Protonation of the dimethylamino group switches the absorption from intramolecular charge-transfer (ICT) to π → π* transition. The ground state pKa value of 2,7-DAFS was determined as 4.51. The fluorescence spectrum of the excited basic form, *(DAFS), shows a structureless single band with a large Stokes shift, whereas that of the acidic form, *(+HDAFS), exhibits a structured band with a small Stokes shift. The emission intensities of the basic and acidic forms versus pH/Ho plots show stretched sigmoidal curves and indicate that (1) the rate of deprotonation of *(+HDAFS) is comparable to the fluorescence decay of the species, and (2) the efficient proton-induced quenching of *(DAFS) fluorescence occurs. The pKa* was estimated as −1.7 from the fluorescence titration curve. The fluorescence maximum of *(DAFS) is blue-shifted as the polarity of solvent decreases. However, no clear dependency of the emission intensity and spectral half width, and thus fluorescence quantum yield, on the solvent polarity was revealed. It appears that the fluorescence sensitivity of 2,7-DAFS is 15 ∼ 25 times greater than the sensitivity of a widely utilized fluorescent probe, 5-(dimethylamino)-1-naphthalenesulfonate. This higher sensitivity, together with the ease of derivatization, would provide the fluorene-based fluorescent molecules significant advantages for a variety of applications.  相似文献   

16.
The femtosecond time-resolved difference absorption spectra of all-trans-β-Apo-8′-carotenal have been recorded and analyzed by the singular-value decomposition (SVD) method followed by global fitting using a sequential model for the excited-state energy relaxation. With this model, we have obtained the excited-state absorption spectra and the lifetimes of the corresponding excited states both in nonpolar solvent n-hexane and polar solvent methanol. Three excited states, namely S3(170fs), S2(2.32ps) and S1(26ps) in n-hexane, and two excited states S2(190fs) and S1(9.4ps) in methanol have been observed. The excited-state absorption spectra of all-trans-β-Apo-8′-carotenal in methanol display a red shift and broadeness, while the lifetime of S1 state becomes shorter. It is proposed that these effects are related to the presence of a carbonyl functional group that leads to the solvent effect on the excited-state energy level. At the same time, it is shown that the SVD method is a useful tool in resolving the time-resolved absorption spectra.  相似文献   

17.
Four cyano groups have been substituted on the aromatic ring of p-hydroquinone (2,3,5,6-tetracyanohydroquinone) in order to study the enhanced photoacidity of this molecule. The acid-base equilibria have been studied using absorption (for ground state pKa) and fluorescence (excited state pKa) spectra. Three distinct species (neutral, anionic and dianionic forms) were observed in the ground state and only two species (anionic and dianionic forms) were found in the excited state when studied at different pH/Ho in water. Absorption and emission characteristics were studied in various organic solvents, including protic and aprotic solvents. Deprotonation was also investigated using binary mixtures. It has been revealed that absorption and emission spectra are considerably changed with change in media. Proton transfer to the solvent has been observed in various solvents.  相似文献   

18.
Paper reports the DFT/TDDFT study on the electronic structure and spectral properties of the five-membered annulated diphenyl azafluoranthene derivative 1,3-diphenyl-3H-indeno[1,2,3-de]pyrazolo[3,4-b]quinoline (DPIPQ) by means of polarizable continuum model (PCM) and Onsager reaction field approaches at the B3LYP/6-31+G(d,p) level of theory. The results of calculations are compared with the optical absorption and fluorescence spectra as well as with the cyclic voltammetry data. The DFT/TDDFT/PCM approaches exhibit rather good quantitative agreement regarding the spectral position of the first absorption band; the discrepancy between the experiment and theory is less than 0.06 eV (linear response approach) or 0.25 eV (state specific approach). As for the fluorescence emission the TDDFT/PCM calculations underestimate the transition energy on about of 0.7–0.8 eV. Such discrepancy should be attributed to insufficient quality of the TDDFT/PCM optimization in the excited state. Ignoring the geometrical relaxation in the excited state provides considerably better agreement between the experiment and theory; discrepancy is less than 0.1–0.22 eV depending on a solvent polarity. The dominant influence on the fluorescence emission results mainly from the solvent reorganization in the excited state whereas the solute relaxation is indeed weak and may be ignored.  相似文献   

19.
The photoluminescence properties of the europium-chalcogenides EuS, EuSe and EuTe are described. Below approximately 150°K these compounds show a characteristic near-infrared fluorescence band with a half-width of about 0.25 eV. This radiative recombination is ascribed to an intrinsic transition 4f 6 5d→4f 7 of the Eu-ions. Its important frequency shift with respect to the corresponding optical absorption in the vicinity of the absorption edge is due to a Franck-Condon-type relaxation process. The spectral band position and the quantum efficiency of the emission are found to be very sensitive to magnetic ordering. Within the series of substances the different kind of magnetic order is clearly illustrated by the dissimilar spontaneous fluorescence behaviour: On cooling, the ferromagnet EuS displays a red shift and a quenching of the emission nearT c, whereas the antiferromagnet EuTe shows a blue shift of the band and an increase of its intensity nearT N. With respect to this behaviour in zero field an applied magnetic field causes the fluorescence to be quenched and shifted towards longer wavelengths. The largest response to the field is observed in the vicinity of the ordering temperatures and in the metamagnetic temperature range of EuSe. The results are discussed in connection with measurements of the magnetization, the optical absorption and the photoconductivity and compared with fluorescence measurements on Eu(II)-silicates. The behaviour of the excitation spectra is closely related to the absorption edge shift. On the other hand the shift of the emission is not similarly discribed by the mean ion spin correlation. We propose to ascribe this to a magnetic relaxation in the vicinity of the excited state. The unusual intensity behaviour is also discussed.   相似文献   

20.
New N-triazinyl derivatives were synthesized by reaction of cyanuric chloride with 1- and 9-aminoanthracenes and subsequent nucleophilic substitution of chlorine atoms on triazinyl ring with methoxy and/or phenylamino groups. The compounds were characterized by 1H and 13C NMR and mass spectra. The influence of the chemical structure and solvent polarity on the UV/Vis absorption and fluorescence spectra and fluorescence quantum yields were investigated. Semi-empirical computations revealed highly polar CT states in singlet excited state manifold connected with charge-transfer from the hydrocarbon moiety to the triazinyl ring. The relationships between the CT-to-emitting state energy gap, solvent polarity and fluorescence quantum yield were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号