首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the dynamics of random walks on weighted networks. Assuming that the edge weight and the node strength are used as local information by a random walker. Two kinds of walks, weight-dependent walk and strength-dependent walk, are studied. Exact expressions for stationary distribution and average return time are derived and confirmed by computer simulations. The distribution of average return time and the mean-square displacement are calculated for two walks on the Barrat-Barthelemy-Vespignani (BBV) networks. It is found that a weight-dependent walker can arrive at a new territory more easily than a strength-dependent one.  相似文献   

2.
赵晖  高自友 《中国物理快报》2006,23(8):2311-2314
We examine the weighted networks grown and evolved by local events, such as the addition of new vertices and links and we show that depending on frequency of the events, a generalized power-law distribution of strength can emerge. Continuum theory is used to predict the scaling function as well as the exponents, which is in good agreement with the numerical simulation results. Depending on event frequency, power-law distributions of degree and weight can also be expected. Probability saturation phenomena for small strength and degree in many real world networks can be reproduced. Particularly, the non-trivial clustering coefficient, assortativity coefficient and degree-strength correlation in our model are all consistent with empirical evidences.  相似文献   

3.
Liang Wu 《Physica A》2008,387(14):3789-3795
A network growth model with geographic limitation of accessible information about the status of existing nodes is investigated. In this model, the probability Π(k) of an existing node of degree k is found to be super-linear with Π(k)∼kα and α>1 when there are links from new nodes. The numerical results show that the constructed networks have typical power-law degree distributions P(k)∼kγ and the exponent γ depends on the constraint level. An analysis of local structural features shows the robust emergence of scale-free network structure in spite of the super-linear preferential attachment rule. This local structural feature is directly associated with the geographical connection constraints which are widely observed in many real networks.  相似文献   

4.
In order to explore further the underlying mechanism of scale-free networks, we study stochastic secession as a mechanism for the creation of complex networks. In this evolution the network growth incorporates the addition of new nodes, the addition of new links between existing nodes, the deleting and rewiring of some existing links, and the stochastic secession of nodes. To random growing networks with preferential attachment, the model yields scale-free behavior for the degree distribution. Furthermore, we obtain an analytical expression of the power-law degree distribution with scaling exponent γ ranging from 1.1 to 9. The analytical expressions are in good agreement with the numerical simulation results.  相似文献   

5.
Mu Chen  Peng Xu  Jun Chen 《Physica A》2007,385(2):707-717
We introduce a new simple pseudo tree-like network model, deterministic complex network (DCN). The proposed DCN model may simulate the hierarchical structure nature of real networks appropriately and have the unique property of ‘skipping the levels’, which is ubiquitous in social networks. Our results indicate that the DCN model has a rather small average path length and large clustering coefficient, leading to the small-world effect. Strikingly, our DCN model obeys a discrete power-law degree distribution P(k)∝kγ, with exponent γ approaching 1.0. We also discover that the relationship between the clustering coefficient and degree follows the scaling law C(k)∼k−1, which quantitatively determines the DCN's hierarchical structure.  相似文献   

6.
We propose a model for the localization of risky information in social (scale free) networks where we assume that risky information can propagate only between “mutually trusted nodes” (MTN). We propose an algorithm to construct the MTN network and show that there is a critical value of trusted nodes below which information localizes. This critical value increases drastically if a fraction p of nodes does not transfer information at all. We study the fraction of initial messengers needed to inform a desired fraction of the network as a function of the average number of trusted nodes and discuss possible applications of the model also to marketing and to the spreading of a disease with very short incubation time.  相似文献   

7.
A.P. Masucci  G.J. Rodgers 《Physica A》2007,386(1):557-563
We introduce and analyze a model of a multi-directed Eulerian network, that is a directed and weighted network where a path exists that passes through all the edges of the network once and only once. Networks of this type can be used to describe information networks such as human language or DNA chains. We are able to calculate the strength and degree distribution in this network and find that they both exhibit a power law with an exponent between 2 and 3. We then analyze the behavior of the accelerated version of the model and find that the strength distribution has a double slope power-law behavior. Finally we introduce a non-Eulerian version of the model and find that the statistical topological properties remain unchanged. Our analytical results are compared with numerical simulations.  相似文献   

8.
Sungmin Lee  Yup Kim 《Physica A》2007,385(2):743-749
We show how effectively the diffusive capture processes (DCP) on complex networks can be applied to information search in the networks. Numerical simulations show that our method generates only 2% of traffic compared with the most popular flooding-based query-packet-forwarding (FB) algorithm. We find that the average searching time, 〈T〉, of the our model is more scalable than another well known n-random walker model and comparable to the FB algorithm both on real Gnutella network and scale-free networks with γ=2.4. We also discuss the possible relationship between 〈T〉 and 〈k2〉, the second moment of the degree distribution of the networks.  相似文献   

9.
We propose a growing model which interpolates between one-dimensional regular lattice and small-world networks. The model undergoes an interesting phase transition from large to small worlds. We investigate the structural properties by both theoretical predictions and numerical simulations. Our growing model is a complementarity for the important static Watts-Strogatz network model.  相似文献   

10.
A preferential attachment model for a growing network incorporating the deletion of edges is studied and the expected asymptotic degree distribution is analyzed. At each time step t=1,2,…, with probability π1>0 a new vertex with one edge attached to it is added to the network and the edge is connected to an existing vertex chosen proportionally to its degree, with probability π2 a vertex is chosen proportionally to its degree and an edge is added between this vertex and a randomly chosen other vertex, and with probability π3=1−π1π2<1/2 a vertex is chosen proportionally to its degree and a random edge of this vertex is deleted. The model is intended to capture a situation where high-degree vertices are more dynamic than low-degree vertices in the sense that their connections tend to be changing. A recursion formula is derived for the expected asymptotic fraction pk of vertices with degree k, and solving this recursion reveals that, for π3<1/3, we have pkk−(3−7π3)/(1−3π3), while, for π3>1/3, the fraction pk decays exponentially at rate (π1+π2)/2π3. There is hence a non-trivial upper bound for how much deletion the network can incorporate without losing the power-law behavior of the degree distribution. The analytical results are supported by simulations.  相似文献   

11.
Unified index to quantifying heterogeneity of complex networks   总被引:1,自引:0,他引:1  
Hai-Bo Hu 《Physica A》2008,387(14):3769-3780
Although recent studies have revealed that degree heterogeneity of a complex network has significant impact on the network performance and function, a unified definition of the heterogeneity of a network with any degree distribution is absent. In this paper, we define a heterogeneity index 0≤H<1 to quantify the degree heterogeneity of any given network. We analytically show the existence of an upper bound of H=0.5 for exponential networks, thus explain why exponential networks are homogeneous. On the other hand, we also analytically show that the heterogeneity index of an infinite power law network is between 1 and 0.5 if and only if its degree exponent is between 2 and 2.5. We further show that for any power law network with a degree exponent greater than 2.5, there always exists an exponential network such that both networks have the same heterogeneity index. This may help to explain why 2.5 is a critical degree exponent for some dynamic behaviors on power law networks.  相似文献   

12.
A. Kabakç?o?lu 《Physica A》2007,386(2):764-769
We show that the out-degree distribution of the gene regulation network of the budding yeast, Saccharomyces cerevisiae, can be reproduced to high accuracy from the statistics of TF binding sequences. Our observation suggests a particular microscopic mechanism for the observed universal global topology in these networks. The numerical data and analytical solution of our model disagree with a simple power-law for the experimentally obtained degree distribution in the case of yeast.  相似文献   

13.
Wen-Jie Bai  Tao Zhou 《Physica A》2007,384(2):656-662
In this paper, we investigate two major immunization strategies, random immunization and targeted immunization, of the susceptible-infected (SI) model on the Barabási-Albert (BA) networks. For the heterogeneous structure, the random strategy is quite ineffective if the vaccinated proportion is small, while the targeted one which prefers to vaccinate the individuals with the largest degree can sharply depress the epidemic spreading even only a tiny fraction of population are vaccinated. The analytical solution is also obtained, which can capture the trend of velocity change vs. the amount of vaccinated population.  相似文献   

14.
Jian-Wei Wang  Li-Li Rong 《Physica A》2009,388(8):1731-1737
Most previous existing works on cascading failures only focused on attacks on nodes rather than on edges. In this paper, we discuss the response of scale-free networks subject to two different attacks on edges during cascading propagation, i.e., edge removal by either the descending or ascending order of the loads. Adopting a cascading model with a breakdown probability p of an overload edge and the initial load (kikj)α of an edge ij, where ki and kj are the degrees of the nodes connected by the edge ij and α is a tunable parameter, we investigate the effects of two attacks for the robustness of Barabási-Albert (BA) scale-free networks against cascading failures. In the case of α<1, our investigation by the numerical simulations leads to a counterintuitive finding that BA scale-free networks are more sensitive to attacks on the edges with the lowest loads than the ones with the highest loads, not relating to the breakdown probability. In addition, the same effect of two attacks in the case of α=1 may be useful in furthering studies on the control and defense of cascading failures in many real-life networks. We then confirm by the theoretical analysis these results observed in simulations.  相似文献   

15.
We study network growth from a fixed set of initially isolated nodes placed at random on the surface of a sphere. The growth mechanism we use adds edges to the network depending on strictly local gain and cost criteria. Only nodes that are not too far apart on the sphere may be considered for being joined by an edge. Given two such nodes, the joining occurs only if the gain of doing it surpasses the cost. Our model is based on a multiplicative parameter λ that regulates, in a function of node degrees, the maximum geodesic distance that is allowed between nodes for them to be considered for joining. For n nodes distributed uniformly on the sphere, and for within limits that depend on cost-related parameters, we have found that our growth mechanism gives rise to power-law distributions of node degree that are invariant for constant . We also study connectivity- and distance-related properties of the networks.  相似文献   

16.
Xutao Wang  Guanrong Chen 《Physica A》2007,384(2):667-674
In this paper, a new algorithm is proposed, which uses only local information to analyze community structures in complex networks. The algorithm is based on a table that describes a network and a virtual cache similar to the cache in the computer structure. When being tested on some typical computer-generated and real-world networks, this algorithm demonstrates excellent detection results and very fast processing performance, much faster than the existing comparable algorithms of the same kind.  相似文献   

17.
In this paper, we analyze statistical properties of a communication network constructed from the records of a mobile phone company. The network consists of 2.5 million customers that have placed 810 million communications (phone calls and text messages) over a period of 6 months and for whom we have geographical home localization information. It is shown that the degree distribution in this network has a power-law degree distribution k−5 and that the probability that two customers are connected by a link follows a gravity model, i.e. decreases as d−2, where d is the distance between the customers. We also consider the geographical extension of communication triangles and we show that communication triangles are not only composed of geographically adjacent nodes but that they may extend over large distances. This last property is not captured by the existing models of geographical networks and in a last section we propose a new model that reproduces the observed property. Our model, which is based on the migration and on the local adaptation of agents, is then studied analytically and the resulting predictions are confirmed by computer simulations.  相似文献   

18.
吴斌  刘琦  叶祺 《中国物理快报》2008,25(2):776-779
A number of researching works have shed light on the field of complex networks recently. We investigate a wide range of real-world networks and find several interesting phenomena. Firstly, almost all of these networks evolve by overlapping new small graphs on former networks. Secondly, not only the degree sequence of the mature network follows a power-law distribution, but also the distribution of the cumulative occurrence times during the growing process are revealed to have a heavy tail. Existing network evolving models do not provide interpretation to these phenomena. We suggest a model based on the team assembling mechanism, which is extracted from the growing processes of real-world networks and requires simple parameters, and produces networks exhibiting these properties observed in the present study and in previous works.  相似文献   

19.
In this paper, we study a rank-based model for weighted network. The evolution rule of the network is based on the ranking of node strength, which couples the topological growth and the weight dynamics. Analytically and by simulations, we demonstrate that the generated networks recover the scale-free distributions of degree and strength in the whole region of the growth dynamics parameter (α>0). Moreover, this network evolution mechanism can also produce scale-free property of weight, which adds deeper comprehension of the networks growth in the presence of incomplete information. We also characterize the clustering and correlation properties of this class of networks. It is showed that at α=1 a structural phase transition occurs, and for α>1 the generated network simultaneously exhibits hierarchical organization and disassortative degree correlation, which is consistent with a wide range of biological networks.  相似文献   

20.
Attack vulnerability of scale-free networks due to cascading failures   总被引:2,自引:0,他引:2  
In this paper, adopting the initial load of a node i to be with ki being the degree of the node i, we propose a cascading model based on a load local redistribution rule and examine cascading failures on the typical network, i.e., the BA network with the scale-free property. We find that the BA scale-free network reaches the strongest robustness level in the case of α=1 and the robustness of the network has a positive correlation with the average degree 〈k〉, where the robustness is quantified by a transition from normal state to collapse. In addition, we further discuss the effects of two different attacks for the robustness against cascading failures on our cascading model and find an interesting result, i.e., the effects of two different attacks, strongly depending to the value α. These results may be very helpful for real-life networks to avoid cascading-failure-induced disasters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号