首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equation of state for gases of point particles with logarithmic interaction is derived. The system exhibits a phase transition at a critical temperature Tc. The critical temperature is a function of the dimension of the system. A hard core must be added below Tc to prevent the system from collapsing. The specific heat diverges on both sides as |Tc - T|-2 in any dimension.For TTc there are no zeros of the grand partition function in the complex fugacity plane, for T >Tc all zeros occupy the whole negative real axis. The density of zeros will be calculated.  相似文献   

2.
The high-pressure induced phase transitions initiated by electronic transition in 3d ions from the high-spin (HS) to the low-spin (LS) state (HS-LS spin-crossover) are considered. Behavior of the system with d6 electronic configuration is investigated in the ground state of zero temperature and critical pressure Pc. Magnetic properties of the Mott–Hubbard insulator (Mg1−xFex)O are studied in the vicinity of the quantum critical point (T=0, Pc). At the critical pressure of spin crossover Pc, the spin gap energy εS between HS and LS states is zero. The quantum spins fluctuations HS⇔LS do not require any energy, and the antiferromagnetism is destroyed in the quantum critical point by the first order transition.  相似文献   

3.
We have investigated the pressure-induced structural phase transition in ReO3 by neutron diffraction on a single crystal. We collected neutron diffraction intensities from the ambient and high pressure phases at P=7 kbar and refined the crystal structures. We have determined the stability of the high pressure phase as a function temperature down to T=2 K and have constructed the (P-T) phase diagram. The critical pressure is Pc=5.2 kbar at T=300 K and decreases almost linearly with decreasing temperature to become Pc=2.5 kbar at T=50 K. The phase transition is driven by the softening of the M3 phonon mode. The high pressure phase is formed by the rigid rotation of almost undistorted ReO6 octahedra and the Re-O-Re angle deviates from 180°. We do not see any evidence for the existence of the tetragonal (P4/mbm) intermediate pressure phase reported earlier.  相似文献   

4.
We study the superconducting transition temperature (Tc) and the Peierls instability temperature (Tp) using Eliashberg type equations for both Tc and Tp self consistently with finite interchain coupling. We show that Tc > Tp below a critical electron-phonon coupling constant which depends on the bare phonon frequency. This determines an upper bound on Tc so that for higher transition temperatures Tp > Tc and superconductivity is unlikely. Higher values of Tc are possible if the interchain coupling is increased above a critical value where the Peierls instability is suppressed.  相似文献   

5.
In a recent theory of the noise model of alloys like AuFe a singular point at zero temperature was found to separate a spin glass phase at high concentrations and a Kondo phase at low concentrations. Despite this there is a resistance maximum in both “phases”, although of different characters. In the present letter a relation is given between the temperature of the maximum, Tm, the noise temperature, Δc, and the Kondo temperature, TK. This extends a previously given expression, that is only valid in the spin glass limit Δc >> TK, across the transition at Δc = TK into the Kondo phase and values of Δc less than TK.  相似文献   

6.
We present the complete calculation of the partition function and correlation functions of a linear array of classical spins coupled by a nearest neighbour logarithmic pair potential. In the case of a ferromagnetic coupling there occurs a phase transition at Tc > 0. The critical exponents of the specific heat C and the magnetic susceptibility χ (in the absence of an external field) are shown to have the non-classical value α = 2 and classical value γ = 1 respectively. The underlying mathematical mechanism of the phase transition is the complete degeneracy of all the eigenvalues of the corresponding integral equation (Kac's mechanism). Below Tc the partition function becomes complex. For antiferromagnetic coupling the free energy is analytic in the whole temperature range and so no phase transition occurs in this case.  相似文献   

7.
The antiferro- to paramagnetic phase transition of the weakly anisotropic compound MnF2 has been studied by means of heat capacity, magnetic susceptibility and thermal expansion measurements. The critical-point parameters associated with the specific heat indicate a transition according to the theoretical Ising-model. The temperature derivative of the parallel magnetic susceptibility times temperature (d(χ∥T)/dT) and the c-axis thermal expansion coefficient show a critical behaviour very similar to that of the specific heat. The influence of iron doping on the critical behaviour has been investigated by studies on Mn0.98Fe0.02F2. Specific heat and magnetic susceptibility measurements show an unexpectedly sharp transition although some rounding off is noticed as compared to pure MnF2.  相似文献   

8.
The monophosphate tungsten bronzes KxP4W8O32 (0.75<x<2) are quasi-two-dimensional conductors which show electronic transitions at a critical temperature Tc depending on the concentration of the alkali metal. The phase diagram shows a maximum at for x=1.30. We report specific heat measurements in the range 120-190 K. The thermal anomalies found at the transition temperature are larger than in conventional charge density wave materials. This corroborates that the transition is not a ‘pure’ charge density wave transition and that a structural transition dominates the instability.  相似文献   

9.
We show that the one- and two-dimensional ideal Bose gases undergo a phase transition if the temperature is lowered at constant pressure. At the pressure-dependent transition temperature Tc (P) and in their thermodynamic limit the specific heat at constant pressure cp and the particle densityn diverge, the entropyS and specific heat at constant volumec v fall off sharply but continuously to zero, and the fraction of particles in the ground state N0/N jumps discontinuously from zero to one. This Bose-Einstein condensation provides a remarkable example of a transition which has most of the properties of a second-order phase transition, except that the order parameter is discontinuous. The nature of the condensed state is described in the large but finiteN regime, and the width of the transition region is estimated. The effects of interactions in real one- and two-dimensional Bose systems and recent experiments on submonolayer helium films are discussed briefly.  相似文献   

10.
A Perumal 《Pramana》2001,56(4):569-577
Electrical resistivity (ρ) of the amorphous (a-)Fe100−c Zr c (c=8.5, 9.5 and 10) alloys has been measured in the temperature range 77 to 300 K, which embraces the second-order magnetic phase transition at the Curie temperature point T c. Analysis of the resistivity data particularly in the critical region reveals that these systems have a much wider range of critical region compared to other crystalline ferromagnetic materials. The value of T c and specific heat critical exponent, α has the same values as those determined from our earlier magnetic measurements. The value of α for all the present investigated alloys are in close agreement with the values predicted for three-dimensional (3D) Heisenberg ferromagnet systems, which gives contradiction to the earlier results on similar alloys. It is observed from the analysis that the presence of quenched disorder does not have any influence on critical behavior.  相似文献   

11.
We analyze a fermionic Ising spin glass model in the presence of a transverse magnetic field Γ within a cluster mean field theory. The model considers a Sherrington-Kirkpatrick type interaction between magnetic moments of clusters with a ferromagnetic intra-cluster coupling J0. The spin site operators are written as a bilinear combination of fermionic operators. In these quantum spin glass model, the inter-cluster disorder is treated by using a framework of one-step replica symmetry breaking within the static approximation. The effective intra-cluster interaction is then computed by means of an exact diagonalization method. Results for several cluster size ns, values of Γ and J0 are presented. For instance, the specific heat shows a broad maximum (for ns>1) at a temperature above the freezing temperature Tf, which is characterized by the inter-cluster replica symmetry breaking. Phase diagrams T versus Γ show that the critical temperature Tf(Γ) decreases for any value of ns when Γ increases until it reaches a quantum critical point at some value of Γc.  相似文献   

12.
A correlation between the second critical field Hc2 of the helix to paramagnetic transition and the magnetic specific heat C-peak was found in ZnCr2−xAlxSe4 spinel single crystals with x=0.15, 0.23. The specific heat peak is anomalously sharp for all finite magnetic fields used here and this points to a first order magneto-structural transition (from cubic to tetragonal symmetry). The C(T)-peak is increasingly suppressed as the external field increases. Approaching the Neel temperature TN, a broad ac-magnetic susceptibility peak is observed for zero dc-magnetic field. That peak does not show an energy loss and thus points towards a return to a second order type of transition. The magnetic contribution to the specific heat displays a sharp peak at TN and is maximal at the spin fluctuation temperature Tsf=34 K. Tsf is related to the maximum of the magnetic susceptibility at Tm=40 K (at 50 kOe) in the spin fluctuation region, as evidenced by the entropy exceeding 90% of the entropy calculated classically for the complete alignment of the Cr spins, (2−x)R ln(2S+1). The X-ray photoelectron spectroscopy (XPS) data indicate that Al-substitution does not affect Cr3+ 3d3 electronic configuration.  相似文献   

13.
The properties of Ising square lattices with nearest neighbor ferromagnetic exchange confined in a corner geometry, are studied by means of Monte Carlo simulations. Free boundary conditions at which boundary magnetic fields ±h are applied, i.e., at the two boundary rows ending at the lower left corner a field +h acts, while at the two boundary rows ending at the upper right corner a field −h acts. For temperatures T less than the critical temperature Tc of the bulk, this boundary condition leads to the formation of two domains with opposite orientation of the magnetization direction, separated by an interface which for T larger than the filling transition temperature Tf(h) runs from the upper left corner to the lower right corner, while for T<Tf(h) this interface is localized either close to the lower left corner or close to the upper right corner. It is shown that for T=Tf(h) the magnetization profile m(z) in the z-direction normal to the interface simply is linear and the interfacial width scales as wL, while for T>Tf(h) it scales as . The distribution P(?) of the interface position ? (measured along the z-direction from the corners) decays exponentially for T<Tf(h) from either corner, is essentially flat for T=Tf(h), and is a Gaussian centered at the middle of the diagonal for T>Tf(h). Unlike the findings for critical wetting in the thin film geometry of the Ising model, the Monte Carlo results for corner wetting are in very good agreement with the theoretical predictions.  相似文献   

14.
We apply a mean field approach to the extended Hubbard model on a square lattice to the YBa2Cu3O7−δ family of superconductors under pressure. The parameters of the tight-binding band are taken from experiments, and the coupling strength U and V are estimated by the zero pressure phase diagram (Tc×nh). This scheme yields the non-trivial dependence of the superconductor critical temperature Tc as a function of the hole concentration nh in the CuO2 plane. With the assumption that the pressure P modifies the potential V and the on-plane hole content nh, we can distinguish the charge transfer and the intrinsic contribution to Tc(P). We show that the changes on Tc(P) for the YBa2Cu3O7 optimally doped compound at low pressures are almost entirely due to the intrinsic term.  相似文献   

15.
The effect of the Peierls transition on superconductivity in a two-band system, where one of the bands is flat, is examined theoretically. We find that superconductivity appears at the background of the insulating phase (TP >; Tc). At Tc > TP only the superconducting transition is possible.  相似文献   

16.
Using an a.c. technique, the specific heat of NaNO2 was measured as a function of temperature near its antiferroelectric-to-paraelectric phase transition point (TN). The transition was found to be of the second order. The critical exponents are; α = 0·38 for ? = 2 × 10?4 ~ 1 × 10?1, and α′ = 0·18 for ? = ?2 × 10?4 ~ ?3 × 10?3. The critical exponents deduced from the scaling-law relations are roughly close to the values obtained from a random phase approximation for a system with an isotropic interaction. However, a difference was recognized between the observed exponent for the specific heat and the values theoretically given for T > TN by the random phase approximation for a system with a short-range interaction or for a system with a long-range dipolar interaction. A thermodynamical analysis was made by using the generalized Pippard relation, and the present result was found to be consistent with the pressure dependence of the antiferroelectric transition point.  相似文献   

17.
A theory of high-temperature superconductivity based on the combination of the fermion-condensation quantum phase transition and the conventional theory of superconductivity is presented. This theory describes maximum values of the superconducting gap, which can be as big as Δ1~0.1ε F , with ε F being the Fermi level. We show that the critical temperature 2T c 1. If the pseudogap exists above T c , then 2T*?Δ1 and T* is the temperature at which the pseudogap vanishes. A discontinuity in the specific heat at T c is calculated. The transition from conventional superconductors to high-T c ones as a function of the doping level is investigated. The single-particle excitations and their lineshape are also considered  相似文献   

18.
Measurements of the depressions of the superconducting transition temperature Tc with Sm impurity concentration and the specific heat jump at Tc as a function of Tc, and the temperature dependences of the normal state specific heat and magnetic susceptibility are reported for the matrix impurity system (LaSm)Sn3. The results constitute the first definitive evidence of a Kondo effect for a dilute alloy containing Sm impurities.  相似文献   

19.
Tetragonal FeSe is a superconductor with a transition temperature Tc of 8 K and shows a huge enhancement of Tc with applying pressure. Tetragonal FeTe has a structure very analogous to superconducting FeSe, but does not show superconducting transition. We investigated the pressure effect of resistivity on FeTe. The resistivity at room temperature decreased with increasing pressure. An anomaly in resistivity around 80 K shifted towards a lower temperature with increasing pressure.  相似文献   

20.
A study of photoinduced high-Tc superconductivity is presented by canonical two-band BCS model containing Fermi surfaces of p and d holes. We have obtained two superconducting gaps from this model. Studies of chemical potential and hole concentration dependences on critical temperature (Tc) are made. The enhancement of Tc is found due to doping.The study of specific heat and density of states based on this model is also presented. The dependence Tc(nh) for the system YBa2Cu3O7?x (1 2 3) obtained theoretically agrees with the available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号