首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze the large-time behavior of various kinetic models for the redistribution of wealth in simple market economies introduced in the pertinent literature in recent years. As specific examples, we study models with fixed saving propensity introduced by Chakraborti and Chakrabarti (Eur. Phys. J. B 17:167–170, 2000), as well as models involving both exchange between agents and speculative trading as considered by Cordier et al. (J. Stat. Phys. 120:253–277, 2005) We derive a sufficient criterion under which a unique non-trivial stationary state exists, and provide criteria under which these steady states do or do not possess a Pareto tail. In particular, we prove the absence of Pareto tails in pointwise conservative models, like the one in (Eur. Phys. J. B 17:167–170, 2000), while models with speculative trades introduced in (J. Stat. Phys. 120:253–277, 2005) develop fat tails if the market is “risky enough”. The results are derived by a Fourier-based technique first developed for the Maxwell-Boltzmann equation (Gabetta et al. in J. Stat. Phys. 81:901–934, 1995; Bisi et al. in J. Stat. Phys. 118(1–2):301–331, 2005; Pareschi and Toscani in J. Stat. Phys. 124(2–4):747–779, 2006) and from a recursive relation which allows to calculate arbitrary moments of the stationary state.  相似文献   

2.
Equations of hydrodynamics (derived from the Boltzmann equation) beyond the Navier-Stokes level are studied by a method proposed earlier by the author. The main question we consider is the following: What is the most natural replacement for classical (ill-posed) Burnett equations?It is shown that, in some sense, it is a two-parameter set of Generalized Burnett Equations (GBEs) derived in this paper. Some equations of this class are even simpler than original Burnett equations. The region of stability in the space of parameters and other properties of GBEs are discussed.  相似文献   

3.
A linearized model of the Boltzmann equation for a relativistic gas is shown to be reducible, in the ultrarelativistic limit and for (1 + 1)-dimensional problems, to a system of three uncoupled transport equations, one of which is well known. A general method for solving these equations is recalled, with a few new details, and applied to the solution of two boundary value problems. The first of these describes the propagation of an impulsive change in a half space and is shown to give an explicit example of the recently proved result that no signal can propagate with speed larger than the speed of light, according to the relativistic Boltzmann equation. The second problem deals with steady oscillations in a half space and illustrates the meaning of certain recent results concerning the dispersion relation for linear waves in relativistic gas.  相似文献   

4.
In this paper, we consider a simple kinetic model of economy involving both exchanges between agents and speculative trading. We show that the kinetic model admits non trivial quasi-stationary states with power law tails of Pareto type. In order to do this we consider a suitable asymptotic limit of the model yielding a Fokker–Planck equation for the distribution of wealth among individuals. For this equation the stationary state can be easily derived and shows a Pareto power law tail. Numerical results confirm the previous analysis.  相似文献   

5.
In the present paper a general criticism of kinetic equations for vehicular traffic is given. The necessity of introducing an Enskog-type correction into these equations is shown. An Enskog-like kinetic traffic flow equation is presented and fluid dynamic equations are derived. This derivation yields new coefficients for the standard fluid dynamic equations of vehicular traffic. Numerical simulations for inhomogeneous traffic flow situations are shown together with a comparison between kinetic and fluid dynamic models.  相似文献   

6.
Pierre-Henri Chavanis   《Physica A》2010,389(3):375-396
When considering the hydrodynamics of Brownian particles, one is confronted to a difficult closure problem. One possibility to close the hierarchy of hydrodynamic equations is to consider a strong friction limit. This leads to the Smoluchowski equation that reduces to the ordinary diffusion equation in the absence of external forces. Unfortunately, this equation has infinite propagation speed leading to some difficulties. Another possibility is to make a Local Thermodynamic Equilibrium (L.T.E) assumption. This leads to the damped Euler equation with an isothermal equation of state. However, this approach is purely phenomenological. In this paper, we provide a preliminary discussion of the validity of the L.T.E assumption. To that purpose, we consider the case of free Brownian particles and harmonically bound Brownian particles for which exact analytical results can be obtained [S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)]. For these systems, we find that the L.T.E. assumption is not unreasonable and that it can be improved by introducing a time dependent kinetic temperature Tkin(t)=γ(t)T instead of the bath temperature T. We also compare hydrodynamic equations and generalized diffusion equations with time dependent diffusion coefficients.  相似文献   

7.
The basic postulates of the extended irreversible thermodynamics are derived from the kinetic model for a dilute monoatomic gas. Using the Grad 13-moment method to solve the full nonlinear Boltzmann equation for molecules conceived as soft spheres we obtain the microscopic expressions for the entropy flux, the entropy production, and the generalized Pfaffian for the extended definition of entropy as required by such a theory. Some of the physical implications of these results are discussed.Member, Colegio Nacional.  相似文献   

8.
Considering a homogeneous normal quantum fluid consisting of identical interacting fermions or bosons, we derive an exact quantum-statistical generalized kinetic equation with a collision operator given as explicit cluster series where exchange effects are included through renormalized Liouville operators. This new result is obtained by applying a recently developed superoperator formalism (Liouville operators, cluster expansions, symmetrized projectors,P q rule, etc.) to nonequilibrium systems described by a density operator(t) which obeys the von Neumann equation. By means of this formalism a factorization theorem is proven (being essential for obtaining closed equations), and partial resummations (leading to renormalized quantities) are performed. As an illustrative application, the quantum-statistical versions (including exchange effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations are derived.  相似文献   

9.
In this paper, we discuss the large-time behavior of solution of a simple kinetic model of Boltzmann–Maxwell type, such that the temperature is time decreasing and/or time increasing. We show that, under the combined effects of the nonlinearity and of the time-monotonicity of the temperature, the kinetic model has non trivial quasi-stationary states with power law tails. In order to do this we consider a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution. The same idea is applied to investigate the large-time behavior of an elementary kinetic model of economy involving both exchanges between agents and increasing and/or decreasing of the mean wealth. In this last case, the large-time behavior of the solution shows a Pareto power law tail. Numerical results confirm the previous analysis.  相似文献   

10.
The methods of kinetic theory are used to describe the radiation from an atom immersed in a gas of perturbing particles. It is shown that the line shape can be expressed in terms of a one-particle distribution function. The appropriate BBGKY hierarchy of equations is derived. This hierarchy is then truncated by assuming that only two-body collisions are important. The resulting equations are solved to obtain a non-Markovian kinetic equation which describes the combined effects of Doppler and pressure broadening. When the Markovian assumption is applied, a generalized linear Boltzmann equation is obtained which describes the line shape in the region where the impact limit is valid and which also describes the phenomenon of collisional narrowing.This research was supported in part by the Advanced Research Projects Agency of the Department of Defense, monitored by Army Research Office-Durham under Contract No. DA-31-124-ARO-D-139.  相似文献   

11.
It is well-known that the classical Chapman-Enskog procedure does not work at the level of Burnett equations (the next step after the Navier-Stokes equations). Roughly speaking, the reason is that the solutions of higher equations of hydrodynamics (Burnett's, etc.) become unstable with respect to short-wave perturbations. This problem was recently attacked by several authors who proposed different ways to deal with it. We present in this paper one of possible alternatives. First we deduce a criterion for hyperbolicity of Burnett equations for the general molecular model and show that this criterion is not fulfilled in most typical cases. Then we discuss in more detail the problem of truncation of the Chapman-Enskog expansion and show that the way of truncation is not unique. The general idea of changes of coordinates (based on analogy with the theory of dynamical systems) leads finally to nonlinear Hyperbolic Burnett Equations (HBEs) without using any information beyond the classical Burnett equations. It is proved that HBEs satisfy the linearized H-theorem. The linear version of the problem is studied in more detail, the complete Chapman-Enskog expansion is given for the linear case. A simplified proof of the Slemrod identity for Burnett coefficients is also given.  相似文献   

12.
In dense gas kinetic theory it is standard to express all reduced distribution functions as functionals of the singlet distribution function. Since the singlet distribution function includes aspects of correlated particles as well as describing the properties of freely moving particles, it is here argued that these aspects should more clearly be distinguished and that it is the distribution function for free particles that is the prime object in terms of which dense gas kinetic theory should be expressed. The standard equations of dense gas kinetic theory are rewritten from this point of view and the advantages of doing so are discussed.  相似文献   

13.
Andrey Sokolov  Andrew Melatos 《Physica A》2010,389(14):2782-2792
We analyze a simple asset transfer model in which the transfer amount is a fixed fraction f of the giver’s wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of f∈(0,1). The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.  相似文献   

14.
The known solution to the spatially homogeneous nonlinear Boltzmann equation for Maxwell models in a series of Laguerre polynomials is extended to include nonisotropic initial conditions. Existence proofs for a class of solutions are supplied. The equations for the generalized (nonisotropic Laguerre) moments are derived in explicit form for two- and three-dimensional models. Further it is shown that the ordinary moments satisfy the same set of equations as the (Hermite) polynomial moments.  相似文献   

15.
The connection between kinetic theory and the macroscopic equations of fluid dynamics is described. In particular, our results concerning the incompressible Navier-Stokes equations are based on a formal derivation in which limiting moments are carefully balanced rather than on a classical expansion such as those of Hilbert or Chapman-Enskog. The moment formalism shows that the limit leading to the incompressible Navier-Stokes equations, like that leading to the compressible Euler equations, is a natural one in kinetic theory and is contrasted with the systematics leading to the compressible Navier-Stokes equations. Some indications of the validity of these limits are given. More specifically, the connection between the DiPerna-Lions renormalized solution of the classical Boltzmann equation and the Leray solution of the Navier-Stokes equations is discussed.This paper is dedicated to Joel Lebowitz on his 60th-birthday.  相似文献   

16.
Comparison of Kinetic Theory and Hydrodynamics for Poiseuille Flow   总被引:2,自引:0,他引:2  
Comparison of particle (DSMC) simulation with the numerical solution of the Navier–Stokes (NS) equations for pressure-driven plane Poiseuille flow is presented and contrasted with that of the acceleration-driven Poiseuille flow. Although for the acceleration-driven case DSMC measurements are qualitatively different from the NS solution at relatively low Knudsen number, the two are in somewhat better agreement for pressure-driven flow.  相似文献   

17.
Grandmont [J.M. Grandmont, On endogenous competitive business cycles, Econometrica 53 (1985) 995-1045] found that the parameter space of the most classical dynamic models is stratified into an infinite number of subsets supporting an infinite number of different kinds of dynamics, from monotonic stability at one extreme to chaos at the other extreme, and with many forms of multiperiodic dynamics in between. The econometric implications of Grandmont’s findings are particularly important, if bifurcation boundaries cross the confidence regions surrounding parameter estimates in policy-relevant models. Stratification of a confidence region into bifurcated subsets seriously damages robustness of dynamical inferences.Recently, interest in policy in some circles has moved to New-Keynesian models. As a result, in this paper we explore bifurcation within the class of New-Keynesian models. We develop the econometric theory needed to locate bifurcation boundaries in log-linearized New-Keynesian models with Taylor policy rules or inflation-targeting policy rules. Central results needed in this research are our theorems on the existence and location of Hopf bifurcation boundaries in each of the cases that we consider.  相似文献   

18.
The distribution function of the Krook-Wu model of the nonlinear Boltzmann equation (elastic differential cross sections inversely proportional to the relative speed of the colliding particles) is obtained as a generalized Laguerre polynomial expansion where the only time dependence is provided by the coefficients. In a recent paper M. Barnsley and the present author have shown that these coefficients are recursively determined from the resolution of a nonlinear differential system. Here we explicitly show how to construct the solutions of the Krook-Wu model and study the properties of the corresponding Krook-Wu distribution functions.  相似文献   

19.
Rarefied gas flow behavior is usually described by the Boltzmann equation, the Navier-Stokes system being valid when the gas is less rarefied. Slip boundary conditions for the Navier-Stokes equations are derived in a rigorous and systematic way from the boundary condition at the kinetic level (Boltzmann equation). These slip conditions are explicitly written in terms of asymptotic behavior of some linear half-space problems. The validity of this analysis is established in the simple case of the Couette flow, for which it is proved that the right boundary conditions are obtained.  相似文献   

20.
The Nikolskii transform makes it possible to construct inhomogeneous solutions of the Boltzmann equation from homogeneous ones. These solutions correspond to a gas in expansion, but if we introduce external forces, they can relax toward absolute Maxwellians. This property holds independently of the assumed intermolecular inverse power force. Consequently, for Maxwell molecules and from energy-dependent homogeneous distributions, we construct effectively a class of inhomogeneous similarity distributions with Maxwellian equilibrium relaxation. We review and investigate again the homogeneous distributions which can be written in closed form, for instance, we show that an elliptic exact solution proposed some years ago violates positivity. For Maxwell interaction with singular cross sections, we numerically construct inhomogeneous distributions having Maxwellian equilibrium states and study the Tjon overshoot effect. We show that both the sign and the time decrease of the external force as well as the microscopic model of the cross section contribute to the asymptotic behavior of the distribution. These inhomogeneous similarity solutions include a class of distributions that asymptotically oscillate between different Maxwellians. Two classes of external forces are considered: linear spatial-dependent forces or linear velocity-dependent forces plus source term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号