首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature. The spin-wave spectra and four sublattices magnetizations and internal energy are calculated by employing retarded Green function technique. The sublattice magnetizations at ground state are smaller than their classical values, owing to the zero-point quantum fluctuations of the spins.  相似文献   

2.
In this letter, we report on a nanodomain wall thin-film structure and its fabrication. The core unit of this structure consists of a magnetic nanodot layer sandwiched between a magnetically free layer and a pinned layer. When the magnetizations of the free layer and the pinned layer are unparallel, a nanodomain wall is formed in the magnetic nanodot. Based on this concept, a nanodomain wall film structure with a Ni/Al2O3 nanodot layer is prepared. Since the free and pinned layers are coupled through magnetic nanodots, a displacement of free layer MH loop from zero field is observed. By measuring the displacement field of the free layer, the nanodomain wall energy is estimated.  相似文献   

3.
The magnon energy spectra, the sublayer magnetization and the quantum fluctuations in a ferrimagnetic superlattice consisting of four different magnetic sublayers are studied by employing the linear spin-wave approach and Green's function technique. The effects of the interlayer exchange couplings and the spin quantum numbers on the sublayer magnetization and the quantum fluctuations of the systems are discussed for three different spin configurations. The roles of quantum competitions among the interlayer exchange couplings and the symmetry of the different spin configurations have been understood. The magnetizations of some sublayers increase monotonously, while those of others can exhibit their maximum, and the quantum fluctuations of the whole superlattice system can show a minimum when one of the antiferromagnetic interlayer exchange couplings increases. This is due to the quantum competition/transmission of effects of the interlayer exchange couplings. When the spin quantum number of sublayers varies, the system goes through from a quantum region of small spin numbers to a classical region of large spin numbers. The quantum fluctuations of the system exhibit a maximum as a function of the spin quantum number of a sublayer, which is related with higher symmetry of the system. It belongs to the type III Shubnikov group of magnetic groups. This magnetically structural symmetry consists of not only the symmetry of space group, but also the symmetry of the direction and strength of spins.  相似文献   

4.
The Ising model with three alternative layers on the honeycomb and square lattices is studied by using the effective-field theory with correlations. We consider that the nearest-neighbor spins of each layer are coupled ferromagnetically and the adjacent spins of the nearest-neighbor layers are coupled either ferromagnetically or anti-ferromagnetically depending on the sign of the bilinear exchange interactions. We investigate the thermal variations of the magnetizations and present the phase diagrams. The phase diagrams contain the paramagnetic, ferromagnetic and anti-ferromagnetic phases, and the system also exhibits a tricritical behavior.  相似文献   

5.
We study electron tunnelling through two small ferromagnetic dots. Quantum charge fluctuations and interdot coupling cause each Coulomb peak of conductance at zero interdot coupling to split. The interdot tunnel coupling depends on the relative orientation of magnetizations of the two dots, leading to different splitting energies of the Coulomb peaks in parallel and antiparallel magnetization alignments. As a result, a very large tunnelling magnetoresistance occurs near the Coulomb peaks, and its sign may be either positive or negative.  相似文献   

6.
The joint influence of two current-induced effects, namely, longitudinal nonequilibrium spin injection and surface torque, on spin-valve-type ferromagnetic metallic junctions is considered theoretically. The current flows normally to layer boundaries. The analysis is based on solving a system of coupled equations of motion for mobile electron and lattice magnetizations. The boundary conditions for the equations of motion are derived from the continuity condition for the total magnetization flux in these subsystems. A dispersion relation is derived for spin wave fluctuations depending on the current through the junction. The fluctuations become unstable at currents exceeding some threshold value (usually, 106?3 × 107 A/cm2). The joint action of longitudinal spin injection and torque lowers the instability threshold. Current-induced spin injection decreases spin wave frequencies near the threshold and can strengthen magnetization pinning at the injecting contact.  相似文献   

7.
We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.  相似文献   

8.
We have observed long-range spin-triplet supercurrents in Josephson junctions containing ferromagnetic (F) materials, which are generated by noncollinear magnetizations between a central Co/Ru/Co synthetic antiferromagnet and two outer thin F layers. Here we show that the spin-triplet supercurrent is enhanced up to 20 times after our samples are subject to a large in-plane field. This occurs because the synthetic antiferromagnet undergoes a "spin-flop" transition, whereby the two Co layer magnetizations end up nearly perpendicular to the magnetizations of the two thin F layers. We report direct experimental evidence for the spin-flop transition from scanning electron microscopy with polarization analysis and from spin-polarized neutron reflectometry. These results represent a first step toward experimental control of spin-triplet supercurrents.  相似文献   

9.
To investigate the magnetic fluctuations and for further transport study, the poloidal and radial magnetic field t is conducted on the Sino United Spherical Tokamak (SUNIST). Auto-power spectral density indicares that the magnetic fiuctuation energy mainly concentrates in the frequency region lower than lO kttz. The magnetic field oscillations, which are characterized by harmonic frequencies of 40 kHz, are observed in the scrape- off layer; by contrast, in the plasma core, the magnetic fluctuations are of Gaussian type. The time-frequency profiles show that the poloidal magnetic fluctuations are temporally intermittent. The autocorrelation calculation indicates that the fluctuations in decorrelation time vary between the core and the edge.  相似文献   

10.
The fully connected Hopfield network is inferred based on observed magnetizations and pairwise correlations.We present the system in the glassy phase with low temperature and high memory load.We find that the inference error is very sensitive to the form of state sampling.When a single state is sampled to compute magnetizations and correlations,the inference error is almost indistinguishable irrespective of the sampled state.However,the error can be greatly reduced if the data is collected with state transitions.Our result holds for different disorder samples and accounts for the previously observed large fluctuations of inference error at low temperatures.  相似文献   

11.
The characteristic influences of size S, exchange interaction and transverse field on the longitudinal and transverse magnetizations of a ferroelectric small particle described by the transverse Ising model are investigated by the use of the standard mean-field theory. In particular, the longitudinal magnetization of a nanoparticle is strongly affected by the surface situations. The effective exponent βeff of the longitudinal magnetization is also studied. We find some characteristic phenomena of βeff, depending on the values of S and the ratios of the physical parameters. In relation of recent investigations, the thermal variations of longitudinal and transverse magnetizations in the nanoparticle, consisting of a ferromagnetic core with size S=3 surrounded by a ferromagnetic surface shell with an antiferromagnetic inter-shell coupling, are examined and some typical ferrimagnetic behaviors are found in them. In relation to these phenomena, the effects of surface dilution on the magnetizations are investigated and some novel features are found in the system with size S=3 surrounded by such a ferromagnetic diluted surface shell.  相似文献   

12.
The two Bose–Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz–Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation.  相似文献   

13.
We study a one parameter variational wave function to improve the spin density wave ground state of the Hubbard model by inclusion of quantum spin fluctuations. Using a perturbative approach and novel lattice summation techniques we present analytical as well as numerical results for the correlation energies and the staggered magnetizations in one and two dimensions. We find ground state energies which are satisfyingly close to known exact results and are significantly lower than those of existing Gutzwiller and numerical treatments.  相似文献   

14.
The Damon and Eshbch theory for the magnetostatic modes in a single crystal film has been extended to a double layer system having different magnetizations as well as different uniaxial anisotropy energies. The dispersion equation is derived and applied to the magnetostatic spectra obtained from a La, Ga: YIG-La: YIG double layer film. The observed spectra are in good agreement with those calculated from the extended DE-theory.  相似文献   

15.
A study on the horizontally LPE-grown La, Ga: YIG films is presented. With the spin wave resonance technique the ratio of the saturation magnetizations of the bulk and transient layer has been measured. The average saturation magnetization was determined by means of a vibrating sample magnetometer and the Ga concentration by x-ray fluorescence analysis. These data are compared with the growth rates of both the transient and the bulk layer. A systematic dependence of the magnetization on the growth rate is found.  相似文献   

16.
A calculation is presented for the component magnetizations of an infinite multilayer Ising system, consisting periodically of two layers of spin- A ions, two layers of spin- B ions, and a disordered layer interface in between that is characterized by a random arrangement of A and B ions like a two-dimensional ApB1−p alloy. The system is a simple cubic Ising-type structure with a coordination number z = 6. The model is general for ferro- and for antiferromagnetic A-B exchange couplings. The A-A and B-B exchange couplings are regarded as ferromagnetic. An effective field theory that goes beyond mean field, is employed to calculate the bulk-like transition temperature, the different component magnetizations as well as the total bulk-like magnetization. The component magnetizations are calculated for different realistic model values of ferro- and antiferromagnetic A-B exchange constants, as a function of temperature and of the concentration parameter p that characterizes the disorder in the interface. We show that the presence of a disordered interface may significantly affect the component and total magnetizations. In particular, for the case of antiferromagnetic exchange couplings, it is shown that the system can acquire a compensation temperature for certain domains of values of the concentration parameter p in the disordered interface.  相似文献   

17.
18.
We report on the reflectance of blue bronze crystals in the visible frequency range as a function of temperature. The observed large oscillations in the reflectance at all wavelengths at temperatures near the Peierls transition are interpreted as interference effects stemming from a surface layer. It is found that the surface layer, which appears to be tied to fluctuations, can be as much as 1.6 microns thick.  相似文献   

19.
We investigate the magnetic excitations for the magnetic problem arising from the absence of magnetic translation symmetry in one dimension due to the presence of an impurity layer embedded within a semi-infinite ferromagnet. A Heisenberg model is employed to investigate the possibility that localized modes can occur with an impurity layer implanted within a semi-infinite ferromagnet. No electronic effects are considered. The theoretical approach employs the matching procedure in the mean field approximation and determines the propagating and evanescent spin amplitude fields including the contribution due to an applied field. The results are used to calculate the energies of localized modes associated with the impurity layer and with the surface. Numerical examples of the modes are given and they are found to exhibit various effects due to the interplay between the impurity layer and surface modes. It is shown that more localized modes can occur and the modification of the spin wave spectra can be signaled by the appearance of surface and impurity modes, besides the bulk excitations. Also, the bulk spin fluctuations field, the spin waves localized on the surface as well as on impurity layer depend are shown to depend on the nature of the exchange coupling between spin sites, the values of spin sites and the position of the impurity layer from the surface.  相似文献   

20.
Ya-Qiu Liang  Guo-Zhu Wei  Feng-Cai Ma 《Physica A》2008,387(18):4513-4518
The mixed spin- 1/2 and spin- 3/2 transverse Ising model in a longitudinal magnetic field is studied within the framework of the effective-field theory with correlations. In this approach the effective-field equations are derived by using a probability distribution method based on the generalized but approximated van der Waerden identities. The total longitudinal and transverse magnetizations, the transverse susceptibility and longitudinal susceptibility and the critical temperatures are obtained. We find a number of interesting phenomena in these quantities, due to the applied transverse field and the longitudinal field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号