首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-dimensional metals, such as quantum wires or carbon nanotubes, can carry charge in arbitrary units, smaller or larger than a single electron charge. However, according to Luttinger theory, which describes the low-energy excitations of such systems, when a single electron is injected by tunneling into the middle of such a wire, it will tend to break up into separate charge pulses, moving in opposite directions, which carry definite fractions f and (1-f) of the electron charge, determined by a parameter g that measures the strength of charge interactions in the wire. (The injected electron will also produce a spin excitation, which will travel at a different velocity than the charge excitations.) Observing charge fractionalization physics in an experiment is a challenge in those (nonchiral) low-dimensional systems which are adiabatically coupled to Fermi liquid leads. We theoretically discuss a first important step towards the observation of charge fractionalization in quantum wires based on momentum-resolved tunneling and multi-terminal geometries, and explain the recent experimental results of Steinberg et al. [H. Steinberg, G. Barak, A. Yacoby, L.N. Pfeiffer, K.W. West, B.I. Halperin, K. Le Hur, Nature Physics 4 (2008) 116].  相似文献   

2.
I theoretically investigate the Stark shift of the exciton goundstate in two vertically coupled quantum dots as a function of the interdot distance. The coupling is shown to enhance the tuneability of the linear optical properties, including energy and oscillator strength, as well as the exciton polarizability. The coupling regime that maximizes these properties results from the detailed balance between the effects of the single-particle tunneling, of the electric field and of the carrier-carrier interaction. I discuss the relevance of these results to the possible implementation of quantum-information processing based on semiconductor quantum dots: in particular, I suggest the identification of the qubits with the exciton levels in coupled- rather than single-dots.  相似文献   

3.
The particle level set method [D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing, J. Comput. Phys. 183 (2002) 83–116.] can substantially improve the mass conservation property of the level set method by using Lagrangian marker particles to correct the level set function in the under-resolved regions. In this study, the limitations of the particle level set method due to the errors introduced in the particle correction process are analyzed, and an improved particle correction procedure is developed based on a new interface reconstruction scheme. Moreover, the zero level set is “anchored” as the level set functions are reinitialized; hence the additional particle correction after the level set reinitialization is avoided. With this new scheme, a well-defined zero level set can be obtained and the disturbances to the interface are significantly reduced. Consequently, the particle reseeding operation will barely result in the loss of interface characteristics and can be applied as frequently as necessary. To demonstrate the accuracy and robustness of the proposed method, two extreme particle reseeding strategies, one without reseeding and the other with reseeding every time step, are applied in several benchmark advection tests and the results are compared with each other. Three interfacial flow cases, a 2D surface tension driven oscillating droplet, a 2D gas bubble rising in a quiescent liquid, and a 3D drop impact onto a liquid pool are simulated to illustrate the advantages of the current method over the level set and the original particle level set methods with regard to the smoothness of geometric properties and mass conservation in real physical applications.  相似文献   

4.
The molecular susceptibility and paramagnetic shift of Rb2CoCl4 single crystals grown using the slow evaporation method were measured, and from these experimental results we obtained the transferred hyperfine interaction due to the transfer of spin density from Co2+ ions to Rb+ ions. The transferred hyperfine field was obtained for the ferroelectric, incommensurate, and normal phases. In the case of Rb(I), the transferred hyperfine interaction decreases with increasing temperature in the incommensurate phase, and increases with increasing temperature in the normal phase. The value of Hhf in the incommensurate and normal phases increases abruptly with increasing temperature in the case of Rb(II). These results indicate that the effects due to the transfer of spin density from Co2+ ions to the Rb(I) and Rb(II) ions are large above Ti. In particular, the effect due to the transfer of spin density to Rb(II) ions in the normal phase is very large; the variations with temperature of the transferred hyperfine interactions of the Rb(I) and Rb(II) nuclei are more or less continuous in Tc1 and Ti, and are not affected by the ferroelectric-incommensurate-normal phase transitions.  相似文献   

5.
The mode I edge delamination could be initiated due to the presence of the interfacial peeling stresses near the edges of the multilayered systems due to the material mismatches between the adjacent layers. However, the exact peeling stress distributions could not be obtained by using the existing analytical and numerical models. It was proposed recently that the peeling moment resulting from the localized peeling stresses could be used to characterize mode I edge delamination. In this paper, the effect of the graded interlayer on the mode I edge delamination by thermal residual stresses in multilayer coating-based systems was investigated. Following the previous analysis approaches, the exact closed-form solutions for the peeling moments at individual interfaces and the curvatures for bilayer system, typical thermal barrier coating (TBC) system and TBC-based system with a graded interlayer inserted between the metallic layer and the ceramic layer were, respectively, derived. Case studies showed that the edge delamination by thermal stress could be impeded by properly selecting the coating materials and individual layer thicknesses. These studies may provide some important insights for developing fail-safe designing methodologies for multilayered systems.  相似文献   

6.
The transport properties of C14 monocyclic ring sandwiched between two Al(1 0 0) electrodes are investigated by first-principle calculations. The variation of the equilibrium conductance as the function of the separation distance between the molecule and the electrodes is studied. C14 monocyclic ring shows metallic behavior according to the calculated equilibrium conductance. Electron transmission occurs through the lowest unoccupied molecular orbital (LUMO). With gate-voltage applied, it is found that the positive and negative gate-voltages can bring very different effect on the variation of equilibrium conductance. We also calculate the effects of adsorbing other atoms on the carbon ring such as oxygen and sulfur atoms. The results indicate that adsorption of this kind of electron-accepting impurity will decrease the conductance of the system.  相似文献   

7.
The single event photon statistics measurement of a single photon source based on the Hanbury-Brown-Twiss (HBT) configuration with an imperfect detection system is studied. It is shown that the imperfect detectors, the imperfect beam-splitter and the unbalanced linear propagation efficiencies will reduce the single event Mandel Q parameter.  相似文献   

8.
J. Kim 《Applied Surface Science》2005,252(5):1305-1312
The methods of X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), and scanning electron microscopy (SEM) have been used to investigate aspects of the bonding of bis-1,2-(triethoxysilyl)ethane (BTSE) onto anodized samples of 7075-T6 aluminum alloy that have been subjected to the various pre-treatments considered in Part I. The oxide layer thins when this sample is subjected to a Forest Products Laboratory (FPL) treatment; topographical changes are detected by SEM after only 5 min, and the “scallop structures” increase in size for longer times of the FPL treatment. These 7075-Al surfaces adsorb more BTSE than the high-purity Al samples considered in Part I, although the interfacial bonding indicated by the [AlOSi]+/[Al2O]+ SIMS ratios measured for the former samples are constant for different times of FPL treatment, unlike the situation for high-purity Al. Heating anodized 7075-Al samples, either before or after FPL treatment, has no significant effect on the subsequent BTSE adsorption, but a H2 plasma treatment can enhance the interfacial Al-O-Si bonding with a decrease in the total BTSE polymerization.  相似文献   

9.
A novel method is developed to analyze a single-mode 3-D optical waveguide based on the ray-approximation method, which we call the improved ray approximation method. The effect of the optical parameters (wavelength, refractive-index and refractive-index difference) on the optimum design is investigated for a strong single-mode 3-D optical waveguide. This is simple and effective for the optimum design of the optical waveguide using the method. This will be helpful for the design of waveguide devices.  相似文献   

10.
The invalidated process and related mechanism of PEG during copper via-filling process were investigated by means of electrochemical polarization and electrochemical impedance (EIS) measurements, and infra-red spectrum (IR) measurement was employed to analyses the invalidated products of PEG. The results suggest that the adsorption strength of PEG on cathode surface and its inhibition to copper reduction decrease gradually with the increase of passed charges (PC). Both the anodic and the cathodic electrifying process can cause the invalidation of PEG, but their invalidated courses are different. PEG will further polymerize to form new PEG with bigger MW on the anode surface, which causes the dispersive ability of plating solution to decrease. As a result, super-filling behavior cannot be obtained and many small wales formed on the specimen surface during copper via-filling process. Inversely, PEG will decompose to form new PEG with smaller MW on the cathode surface, which results in the decrease of PEG adsorption ability and inhibition. As a result, super-filling behavior cannot be obtained and the brightness of the specimen surface decreases during copper via-filling process. The decomposition of PEG is easily to happen than its polymerization when the anodic and cathodic reactions happen in the same plating solution simultaneously. So the main invalidated product of PEG during copper via-filling process is PEG with smaller MW.  相似文献   

11.
The discovery of the neutrino oscillation pattern with solar and atmospheric neutrinos has stimulated systematic studies with long-baseline accelerator experiments. Precise neutrino beamline calculations have demonstrated the importance and paucity of existing hadroproduction data needed to shape the primary meson production in targets and tune available Monte Carlo codes for hadronic shower simulation. After a brief introduction to the physics of neutrino beams, available hadron production data will be reviewed with regards to their parametrization. Fast simulations based on such parameterizations and full Monte Carlo simulations of neutrino beamlines will then be illustrated. The prospective impact of new hadroproduction experiments, such as HARP at CERN and MIPP at Fermilab, will be shown together with some neutrino beamline simulations.  相似文献   

12.
We report on photoluminescence and Raman studies of Xe ion-implanted diamond. Several natural and high-purity artificial diamonds implanted within the wide dose range of 1010-5×1014 ion/cm2 were studied. The room temperature luminescence of the Xe center consists of two zero phonon lines, at 813 nm (strong) and 794 nm (weak). The dose dependences of photoluminescence and Raman spectra were studied. For doses less than 1013 ion/cm2, the luminescence intensity grows with the implantation dose linearly. The defect-induced photoluminescence quenching was observed for doses equal or more than 1013 ion/cm2. Possible models of the Xe center will be discussed. The nature of damages induced by ion implantation at different doses was analyzed using micro-Raman spectroscopy.  相似文献   

13.
I studied experimentally beam self-collimation and splitting in two-dimensional microwave photonic crystals. Using a microwave photonic crystal fabricated from alumina rods, I present an experimental proof of principle for an earlier theoretical proposal [A.F. Matthews, S.K. Morrison, Yu.S. Kivshar, Opt. Commun. 279 (2007) 313] of a photonic crystal beam splitter based on the self-collimation effect.  相似文献   

14.
We perform quantitative optical emission spectroscopy on the hot core of the cathode region of a free-burning arc in argon under atmospheric pressure. As the peak temperatures in the centre of the discharge exceed 22 000 K we are able to observe three spectra of argon (Ar I, Ar II and Ar III) and the continuum emission. We report on some inconsistencies concerning the evaluation of Ar III radiation in both line and continuum emission. These are caused by erroneous data in the literature and common misconceptions about the influence of Ar III on the plasma emission. We discuss the impact of this fact on published data.  相似文献   

15.
The formal expression of the spectral distribution of the transition radiation intensity will be here derived in the case of a relativistic three-dimensional charged beam. Charged beams with a particle density such as is typically encountered in a particle accelerator will be considered. In particular, a sufficiently high particle density will be supposed so that a continuous spatial distribution function can be reliably attributed to the charged bunch. The formula of the spectral distribution of the transition radiation intensity originated by a relativistic three-dimensional charged beam - already presented in a previous work - will be here submitted to a formal check and interpreted in the physical consequences. The present work contains an additional mathematical derivation of the radiation energy spectrum consisting in a different method to implement the continuous limit in the distribution function of the particle coordinates. In the former derivation of the formula, the average operation with respect to the continuous distribution function of the particle coordinates was applied to the radiation intensity of a N electron bunch. In the present one, it is applied to the radiation electric field of a N electron bunch. The comparison of the two alternative but in any case equivalent formal routes to the spectral distribution of the transition radiation intensity will offer the possibility to directly cross-check the mathematical self-consistency of the presented results within the limits of applicability of the continuous limit approximation. According to such results, both the flux and the angular distribution of the photons emitted at a given wavelength - even shorter than the longitudinal length of the bunch - are expected to undergo a modification as the beam transverse size is varied with respect to the observed wavelength. As a function of the beam transverse size the spatial coherence degree of the transition radiation source is thus expected to change. The physical consistency of such an effect occurring in the transition radiation emission by a charged beam can be argued on the basis of a compatibility criterion with other similar relativistic electromagnetic radiative phenomena and interpreted in the framework of the temporal causality and the Huygens-Fresnel principles. Finally, the aspect of the applicability of the continuous limit approximation to the case of a charged beam in a particle accelerator is treated in terms of a practical quantitative criterion.  相似文献   

16.
To prevent the natural processes of decay and to develop and improve the treatments of conservation and restoration of artistic bronzes meaning statues and sculptures, it is important understanding the patination processes and the knowledge of artificially corroded surfaces. Chemical and physical characterization of artificial patinas obtained on artistic bronzes and coppers by using the 19th century Western traditional patination techniques and recipes by means of SEM-EDS, light microscopy and ATR/FT-IR has been done in previous studies [I.Z. Balta, L. Robbiola, Characterization of artificial black patinas on artistic cast bronze and pure copper by using SEM-EDS and light microscopy, in: Proceedings of the 13th European Microscopy Congress, 22-27 August 2004, Antwerp, Belgium, EMC 2004 CD-Rom Conference Preprints; I.Z. Balta, L. Robbiola, Traditional artificial artistic bronze and copper patinas—an investigation by SEM-EDS and ATR/FT-IR, in: Proceedings of the 8th International Conference on Non Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, 15-19 May 2005, Lecce, Italy, ART’05 CD-Rom Conference Preprints]. Differences in morphology (structure, thickness, porosity, adherence, compactity, uniformity, homogeneity) and also in composition, on both artistic cast bronze and pure copper patinas, were clearly evidenced. Further in-depth investigation is required to be carried out in order to better understand the patinas mechanisms of formation and the layers kinetics of growth. The elemental and chemical analysis, either on a surface monolayer or in a depth profile, by using the Secondary Ion Mass Spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS) techniques, can provide this kind of information, unique at trace-level sensitivity. SIMS has proved to be a suitable analytical technique for analyzing small amounts of material with high atomic sensitivity (ppm or even ppb) and high depth/lateral resolution in the micron and sub-micron range [R.G. Wilson, F.A. Stevie, C.W. Magee, Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, Wiley & Sons, New York, 1989; M. Dowsett, A. Adriaens, The role of SIMS in cultural heritage studies, Nucl. Instr. Meth. Phys. Res. B 226 (2004) 38-52]. XPS has the ability to provide detailed chemical information on virtually each kind of solid sample, and elemental identification is therefore possible due to the core level photoemission. The most important advantage is the high surface sensitivity of the chemical information (a few monolayers) [E. Ciliberto, G. Spoto, Modern Analytical Methods in Art and Archaeology, John Wiley & Sons, Inc., New York, 2000]. In addition elements’ relative abundance can be made semi-quantitative or quantitative and information on chemical bonds can be derived.The aim of the present work is to highlight the advantages and the limits of XPS and Dynamic SIMS surface analytical techniques for the characterization of artistic bronze and copper artificial patinas. The results obtained on the analyzed samples allowed the distribution of the main elements in the corrosion patinas layers and the contribution of each elements present in bronze matrix to the color of the resulting patinas to be precisely revealed. This information could be used for comparative studies between artificial and natural patinas, and also for provenience and authentication studies for artistic and archaeological bronzes.  相似文献   

17.
In this work, we use the tight-binding model to study the low-energy electronic properties of zero-dimensional finite-sized nanographene subject to the influence of an electric field. State energies and energy spacings are found to oscillate significantly with the field strength. The state energies and band gaps also rely upon the type of the nanographene. The electric field will modify state energies, alter energy gaps, and induce the complete energy gap modulations. The band gap of the type-IV nanographene is always zero regardless of the value of the field strength. The variations of the state energies will be directly reflected in the density of states. The numbers and frequencies of the density of states’ divergent peaks are strongly dependent on the field strength and the type of the nanographene. Finally, the electron wave functions are found to be localized at certain zigzag lines at zero electric field.  相似文献   

18.
We suggest an experiment to observe vacuum birefringence induced by intense laser fields. A high-intensity laser pulse is focused to ultra-relativistic intensity and polarizes the vacuum which then acts like a birefringent medium. The latter is probed by a linearly polarized X-ray pulse. We calculate the resulting ellipticity signal within strong-field QED assuming Gaussian beams. The laser technology required for detecting the signal will be available within the next three years.  相似文献   

19.
The giant magneto-impedance and skin effect in electroless deposited CuBe/CoNiP composite wires with different diameter of CuBe core are presented, and involves a theoretical approach of the current density distributions in layers. Results show that the strong eddy current in the magnetic CoNiP coating will be induced due to the electromagnetic interactions with the CuBe core. It makes the skin effect strong in the magnetic coating even at very low frequency, and at this, large MI changes can also be observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号