首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jianshe Wu 《Physica A》2007,386(1):469-480
Based on a general complex dynamical network model with nonsymmetric coupling, some criteria for synchronization are proposed based on the approach of state observer design. Unlike the nonobserver-based dynamical networks, where the coupling between two connected nodes is defined by an inner coupling matrix and full state coupling is typically needed, in this paper, smaller amount of coupling variables or even only a scalar output signal of each node is needed to synchronize the network. Unlike the commonly researched complex network model, where the coupling between nodes is symmetric, here, in our network model, the coupling configuration matrix is not assumed to be symmetric and may have complex eigenvalues. The matrix Jordan canonical formalization method is used instead of the matrix diagonalization method, so in our synchronization criteria, the coupling configuration matrix is not required to be diagonalizable. Especially, the proposed step-by-step approach is simpler in computation than the existent ones, which usually rely heavily on numerical toolbox, and may be done by hand completely. An example is given to illustrate the step-by-step approach, in which each node is a two-dimensional dynamical limit cycle oscillator system consisting of a two-cell cellular neural network, and numerical simulations are also done to verify the results of design.  相似文献   

2.
It is commonly accepted that realistic networks can display not only a complex topological structure, but also a heterogeneous distribution of connection weights. In addition, time delay is inevitable because the information spreading through a complex network is characterized by the finite speeds of signal transmission over a distance. Weighted complex networks with coupling delays have been gaining increasing attention in various fields of science and engineering. Some of the topics of most concern in the field of weighted complex networks are finding how the synchronizability depends on various parameters of the network including the coupling strength, weight distribution and delay. On the basis of the theory of asymptotic stability of linear time-delay systems with complex coefficients, the synchronization stability of weighted complex dynamical networks with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of the synchronization state. Finally, an example is given as an illustration testing the theoretical results.  相似文献   

3.
Hongwu Tang  Liang Chen  Chi K. Tse 《Physica A》2008,387(22):5623-5630
This paper addresses the theoretical analysis of synchronization between two complex networks with nonidentical topological structures. By designing effective adaptive controllers, we achieve synchronization between two complex networks. Both the cases of identical and nonidentical network topological structures are considered and several useful criteria for synchronization are given. Illustrative examples are presented to demonstrate the application of the theoretical results.  相似文献   

4.
Impulsive projective synchronization in 1 +N coupled chaotic systems are investigated with the drive-response dynamical network (DRDN) model. Based on impulsive stability theory, some simple but less conservative criteria axe achieved for projective synchronization in DRDNs. Furthermore, impulsive pinning scheme is also adopted to direct the scaring factor onto the desired value. Numerical simulations on generalized chaotic unified system axe illustrated to verify the theoretical results.  相似文献   

5.
Synchronization in complex dynamical networks with nonsymmetric coupling   总被引:1,自引:0,他引:1  
Based on the work of Nishikawa and Motter, who have extended the well-known master stability framework to include non-diagonalizable cases, we develop another extension of the master stability framework to obtain criteria for global synchronization. Several criteria for global synchronization are provided which generalize some previous results. The Jordan canonical transformation method is used in stead of the matrix diagonalization method. Especially, we show clearly that, the synchronizability of a dynamical network with nonsymmetric coupling is not always characterized by its second-largest eigenvalue, even though all the eigenvalues of the nonsymmetric coupling matrix are real. Furthermore, the effects of the asymmetry of coupling on synchronizability of networks with different structures are analyzed. Numerical simulations are also done to illustrate and verify the theoretical results on networks in which each node is a dynamical limit cycle oscillator consisting of a two-cell cellular neural network.  相似文献   

6.
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.  相似文献   

7.
Since the Laplacian matrices of weighted networks usually have complex eigenvalues, the problem of complex synchronized regions should be investigated carefully. The present Letter addresses this important problem by converting it to a matrix stability problem with respect to a complex parameter, which gives rise to several types of complex synchronized regions, including bounded, unbounded, disconnected, and empty regions. Because of the existence of disconnected synchronized regions, the convexity characteristic of stability for matrix pencils is further discussed. Then, some efficient methods for designing local feedback controllers and inner-linking matrices to enlarge the synchronized regions are developed and analyzed. Finally, a weighted network of smooth Chua's circuits is presented as an example for illustration.  相似文献   

8.
This Letter investigates the synchronization problem of a complex network with nonidentical nodes, and proposes two effective control schemes to synchronize the network onto any smooth goal dynamics. By applying open-loop control to all nodes and placing adaptive feedback injections on a small fraction of network nodes, a low-dimensional sufficient condition is derived to guarantee the global synchronization of the complex network with nonidentical nodes. By introducing impulsive effects to the open-loop controlled network, another synchronization scheme is developed for the network composed of nonidentical nodes, and an upper bound of impulsive intervals is estimated to ensure the global stability of the synchronization process. Numerical simulations are given to verify the theoretical results.  相似文献   

9.
吴桂坤  赵鸿 《中国物理快报》2008,25(11):3871-3874
We construct a two-layer feedback neural network by a Monte Carlo based algorithm to store memories as fixed-point attractors or as limit-cycle attractors. Special attention is focused on comparing the dynamics of the network with limit-cycle attractors and with fixed-point attractors. It is found that the former has better retrieval property than the latter. Particularly, spurious memories may be suppressed completely when the memories are stored as a long-limit cycle. Potential application of limit-cycle-attractor networks is discussed briefly.  相似文献   

10.
Complex dynamical networks are being studied across many fields of science and engineering today. The issue of controlling a network to the desired state has attracted increasing attention. In this Letter, we investigate the problem of pinning a complex dynamical network to the solution of an uncoupled system. Our strategy is to apply impulsive control to a small fraction of network nodes. Based on the Lyapunov stability theory, we prove that the theoretical results derived here are effective. In addition, a B-A scale-free network with 20 nodes is taken for illustration and verification.  相似文献   

11.
Ping Li  Zhang Yi 《Physica A》2008,387(14):3729-3737
In this paper, a new method is presented to analyze the linear stability of the synchronized state in arbitrarily coupled complex dynamical systems with time delays. The coupling configurations are not restricted to the symmetric and irreducible connections or the non-negative off-diagonal links. The stability criteria are obtained by using Lyapunov-Krasovskii functional method and subspace projection method. These criteria reveal the relationship between coupling matrices and stability of the dynamical networks.  相似文献   

12.
周震  赵鸿 《中国物理快报》2006,23(6):1402-1405
We show that the performance of the Hopfield neural networks, especially the quality of the recall and the capacity of the effective storing, can be greatly improved by making use of a recently presented neural network designing method without altering the whole structure of the network. In the improved neural network, a memory pattern is recalled exactly from initial states having a given degree of similarity with the memory pattern, and thus one can avoids to apply the overlap criterion as carried out in the Hopfield neural networks.  相似文献   

13.
The synchronization problem of some general complex dynamical networks with time-varying delays is investigated. Both time-varying delays in the network couplings and time-varying delays in the dynamical nodes are considered. The novel delay-dependent criteria in terms of linear matrix inequalities (LMI) are derived based on free-weighting matrices technique and appropriate Lyapunov functional proposed recently. Numerical examples are given to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

14.
This Letter investigates the impulsive synchronization between two complex networks with non-delayed and delayed coupling. Based on the stability analysis of impulsive differential equation, the criteria for the synchronization is derived, and a linear impulsive controller and the simple updated laws are designed. Particularly, the weight configuration matrix is not necessarily symmetric or irreducible, and the inner coupling matrix need not be symmetric. Numerical examples are presented to verify the effectiveness and correctness of the synchronization criteria.  相似文献   

15.
In this Letter, without assuming the symmetry of the coupling matrix, we investigate the global synchronization of the complex networks with non-delayed and delayed coupling based on the pinning controllers. Some sufficient conditions for the global synchronization by adding linear and adaptive feedback controllers to a part of nodes are obtained. Numerical examples are also provided to demonstrate the effectiveness of the theory.  相似文献   

16.
In practical situation, there exists many uncertain information in complex networks, such as the topological structures. So the topology identification is an important issue in the research of the complex networks. Based on LaSalle's invariance principle, in this Letter, an adaptive controlling method is proposed to identify the topology of a weighted general complex network model with non-delayed and delayed coupling. Finally, simulation results show that the method is effective.  相似文献   

17.
This work is concerned with lag projective synchronization of chaotic systems with increasing order. The systems under consideration have unknown parameters and different structures. Combining the adaptive control method and feedback control technique, we design a suitable controller and parameter update law to achieve lag synchronization of chaotic systems with increasing order. The result is rigorously proved by the Lyapunov stability theorem. Moreover, corresponding simulation results are given to verify the effectiveness of the proposed methods.  相似文献   

18.
This Letter considers the problem of controlling a weighted complex dynamical network with coupling time-varying delay toward an assigned evolution. Adaptive controllers have been designed for nodes of the controlled network. Analytical results show that the states of the weighted dynamical network can globally asymptotically synchronize onto a desired orbit under the designed controllers. In comparison with the common linear feedback controllers, the adaptive controllers have strong robustness against asymmetric coupling matrix, time-varying weights, delays, and noise. Numerical simulations illustrated by a nearest-neighbor coupling network verify the effectiveness of the proposed controllers.  相似文献   

19.
Jin Zhou  Lan Xiang 《Physica A》2007,384(2):684-692
The present paper is mainly concerned with the issues of synchronization dynamics of complex delayed dynamical networks with impulsive effects. A general model of complex delayed dynamical networks with impulsive effects is formulated, which can well describe practical architectures of more realistic complex networks related to impulsive effects. Based on impulsive stability theory on delayed dynamical systems, some simple but less conservative criterion are derived for global synchronization of such dynamical network. It is shown that synchronization of the networks is heavily dependent on impulsive effects of connecting configuration in the networks. Furthermore, the theoretical results are applied to a typical SF network composing of impulsive coupled chaotic delayed Hopfield neural network nodes, and are also illustrated by numerical simulations.  相似文献   

20.
Robust impulsive synchronization of complex delayed dynamical networks   总被引:1,自引:0,他引:1  
This Letter investigates robust impulsive synchronization of complex delayed dynamical networks with nonsymmetrical coupling from the view of dynamics and control. Based on impulsive control theory on delayed dynamical systems, some simple yet generic criteria for robust impulsive synchronization are established. It is shown that these criteria can provide a novel and effective control approach to synchronize an arbitrary given delayed dynamical network to a desired synchronization state. Comparing with existing results, the advantage of the control scheme is that synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号