首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electric quadrupole moment and the magnetic moment of the 11Li halo nucleus have been measured with more than an order of magnitude higher precision than before, |Q| = 33.3(5) mb and mu = +3.6712(3)muN, revealing a 8.8(1.5)% increase of the quadrupole moment relative to that of 9Li. This result is compared to various models that aim at describing the halo properties. In the shell model an increased quadrupole moment points to a significant occupation of the 1d orbits, whereas in a simple halo picture this can be explained by relating the quadrupole moments of the proton distribution to the charge radii. Advanced models so far fail to reproduce simultaneously the trends observed in the radii and quadrupole moments of the lithium isotopes.  相似文献   

2.
Relativistic analytical expressions are derived for the electric quadrupole moment induced by the hyperfine interaction of the electron with the nucleus of a hydrogen-like atom in the ns1/2 and np1/2 states. The magnetic dipole and electric quadrupole hyperfine interactions are taken into account. The calculations are performed using the generalized virial relationships for the Dirac equation in a central field. The dependences of the electric quadrupole moment on the nuclear charge Z and the principal quantum number n are analyzed. The induced quadrupole moments are compared with the nuclear quadrupole moments.  相似文献   

3.
The chiral magnetic wave is a gapless collective excitation of quark-gluon plasma in the presence of an external magnetic field that stems from the interplay of chiral magnetic and chiral separation effects; it is composed of the waves of the electric and chiral charge densities coupled by the axial anomaly. We consider a chiral magnetic wave at finite baryon density and find that it induces the electric quadrupole moment of the quark-gluon plasma produced in heavy ion collisions: the "poles" of the produced fireball (pointing outside of the reaction plane) acquire additional positive electric charge, and the "equator" acquires additional negative charge. We point out that this electric quadrupole deformation lifts the degeneracy between the elliptic flows of positive and negative pions leading to v(2)(π(+))相似文献   

4.
The electric quadrupole moment for the 4d(2)D(5/2) state of (88)Sr(+); one of the most important candidates for an optical clock, has been calculated using the relativistic coupled-cluster theory. This is the first application of this theory to determine atomic electric quadrupole moments. The result of the calculation is presented and the important many-body contributions are highlighted. The calculated electric quadrupole moment is (2.94 +/- 0.07)ea(2)(0), where a(o) is the Bohr radius and the electronic charge while the measured value is (2.6 +/- 0.3) ea(2)(0). This is so far the most accurate determination of the electric quadrupole moment for the above mentioned state. We have also calculated the electric quadrupole moments for the metastable 4d(2)D(3/2) state of 88(Sr(+) and for the 3d(2)D(3/2.5/2) and 5d(2)D(3/2.5/2) states of (43)Ca(+) and (138)Ba(+), respectively.  相似文献   

5.
The charge density of vector particles, for example W(+/-), may change sign. The effect manifests itself even for a free propagation, when the energy of the W-boson satisfies epsilon>sqrt[2]m and the standing wave is considered. The charge density of W also changes sign in a vicinity of a Coulomb center. For an arbitrary vector boson (e.g., for spin 1 mesons), this effect depends on the g-factor. An origin of this surprising effect is traced to the electric quadrupole moment and spin-orbit interaction of vector particles; their contributions to the current have a polarization nature. The corresponding charge density equals rho(Pol)=-inverted Delta . P, where P is an effective polarization vector that depends on the quadrupole moment and spin-orbit interaction. This density oscillates in space, producing zero contribution to the total charge.  相似文献   

6.
采用分子力学与量子力学相结合的方法,模拟了电场作用下C60富勒烯二聚体(2C60)分子的几何构型与失效行为,讨论了三种不同方向外加电场对2C60分子几何变形、构型失效、电荷分布与极化偶极矩的影响,并与电场作用下C60富勒烯分子的几何变形与失效行为进行了对比.研究结果表明,2C60分子的几何变形与失效行为与外加电场的方向密切相关.当外加电场与2C60分子的桥接C-C键平行时,2C60分子很容易发生失效,且失效形式也十分独特.  相似文献   

7.
采用密度泛函B3LYP方法在6-31G(d)基组水平上,计算了乙酸乙烯酯分子在不同外电场(0.000 a.u.~0.030 a.u.)作用下的基态几何结构、电偶极距、电荷分布及分子总能量,然后利用杂化CIS-DFT方法在相同基组下研究了外电场对乙酸乙烯酯分子前8个激发态的激发能、波长和振子强度的影响.结果表明,分子的几何结构、电荷分布与外电场的大小呈现强烈的依赖关系.随着外电场的不断增加,分子的总能量逐渐减小,偶极距逐渐增大,激发能随电场的增加总体上呈减小的趋势,表明在外电场作用下,乙酸乙烯酯分子易于激发,激发态波长随电场的增加总体上呈增大的趋势,且电子跃迁光谱都集中在紫外区.  相似文献   

8.
The nuclear magnetic dipole moment mu and electric quadrupole moment Q of the beta-emitting 16N(Ipi = 2(-), T(1/2) = 7.13 s) nucleus have been determined for the first time by detecting its beta-NMR in a MgO crystal and beta-NQR (nuclear quadrupole resonance) in a TiO (2) crystal to be /mu/ = (1.9859+/-0.0011) mu(N) and /Q/ = (17.9+/-1.7) mb, respectively. Although the prediction of mu given by the Hartree-Fock calculation agrees well with the experiment, an abnormally small effective charge for neutrons is required to account for the experimental Q.  相似文献   

9.
Estimates of the electric field gradient in heavy rare earth metals have been evaluated from experimental hyperfine interaction data. In addition, the magnetic hyperfine fields are analyzed. In the metals the effective radial integrals 〈r ?34f of the magnetic and quadrupole hyperfine interaction are reduced at most by 10% compared with the free ion values. The electric field gradients due to the crystalline field have been found to be 200 times larger than those predicted from point charge calculations. This antishielding effect can be explained by an enhanced conduction electron density at the interstitial sites and an increase of the Sternheimer factor γ in the metallic environment.  相似文献   

10.
We show that spin anisotropy can be transferred to an isotropic system by transport of a spin-quadrupole moment. We derive the quadrupole moment current and continuity equation and study a spin-valve structure consisting of two ferromagnets coupled to a quantum dot probing an impurity spin. The quadrupole backaction on their coupled spin results in spin torques and anisotropic spin relaxation which do not follow from standard spin-current considerations. We demonstrate the detection of the impurity spin by charge transport and its manipulation by electric fields.  相似文献   

11.
A fundamentally new understanding of the classical electromagnetic interaction of a point charge and a magnetic dipole moment through order v 2 /c 2 is suggested. This relativistic analysis connects together hidden momentum in magnets, Solem's strange polarization of the classical hydrogen atom, and the Aharonov–Bohm phase shift. First we review the predictions following from the traditional particle-on-a-frictionless-rigid-ring model for a magnetic moment. This model, which is not relativistic to order v 2 /c 2 , does reveal a connection between the electric field of the point charge and hidden momentum in the magnetic moment; however, the electric field back at the point charge due to the Faraday-induced changing magnetic moment is of order 1/c 4 and hence is negligible in a 1/c 2 analysis. Next we use a relativistic magnetic moment model consisting of many superimposed classical hydrogen atoms (and anti-atoms) interacting through the Darwin Lagrangian with an external charge but not with each other. The analysis of Solem regarding the strange polarization of the classical hydrogen atom is seen to give a fundamentally different mechanism for the electric field of the passing charge to change the magnetic moment. The changing magnetic moment leads to an electric force back at the point charge which (i) is of order 1/c 2 , (ii) depends upon the magnetic dipole moment, changing sign with the dipole moment, (iii) is odd in the charge q of the passing charge, and (iv) reverses sign for charges passing on opposite sides of the magnetic moment. Using the insight gained from this relativistic model and the analogy of a point charge outside a conductor, we suggest that a realistic multi-particle magnetic moment involves a changing magnetic moment which keeps the electromagnetic field momentum constant. This means also that the magnetic moment does not allow a significant shift in its internal center of energy. This criterion also implies that the Lorentz forces on the charged particle and on the point charge are equal and opposite and that the center of energy of each moves according to Newton's second law F=Ma where F is exactly the Lorentz force. Finally, we note that the results and suggestion given here are precisely what are needed to explain both the Aharonov–Bohm phase shift and the Aharonov–Casher phase shift as arising from classical electromagnetic forces. Such an explanation reinstates the traditional semiclassical connection between classical and quantum phenomena for magnetic moment systems.  相似文献   

12.
本文研究外加电场对离子交联聚乙烯的微观结构和能量特性的影响,使用分子模拟法建立PbO作硫化剂的交联聚乙烯分子模型,通过半经验法对模型进行几何优化同时施加沿X轴方向的外电场,计算离子交联聚乙烯的分子总能量、偶极矩、极化率、分子轨道能量、能隙、红外光谱、电荷分布并进行分析.得出结论:随着外加电场的上升,交联聚乙烯分子结构会发生变化,当外加电场过大时本文所建交联聚乙烯分子离子盐桥的S-Pb-S键将会发生断裂形成自由基.外加电场会使分子内部的电荷从交联聚乙烯碳链端部向离子盐桥转移,盐桥处Pb原子电荷量不断积累,到达临界点时将会断裂形成电荷量较大的Pb自由基,在外加电场的作用下进一步影响交联聚乙烯分子的稳定性导致其性能下降,研究结果对交联聚乙烯的电树枝老化生成提供参考.  相似文献   

13.
采用密度泛函(DFT)方法B3LYP/Gen,在Pu为SDD基组、H为6-311++G**基组水平上优化得到了分子轴方向不同电偶极场(-0.005—0.005a.u.)作用下,二氢化钚的基态电子状态、几何结构、电偶极矩和分子总能量.在优化构型下用同样的基组采用含时密度泛函(TDDFT)方法(TD-B3LYP)研究了同样外电场条件下对二氢化钚的激发能和振子强度的影响.计算结果表明,分子几何构型与电场大小和方向呈现较强的依赖,电场强度增加基态偶极矩随电场强度线性增加,H-Pu-H的角度线性减小,分子总能量线性减小;激发能随电场强度增加而减小,且对电场方向的依赖呈现近似对称性,满足Grozema关系.电场对振子强度的影响比较复杂,但仍满足跃迁选择定则. 关键词: 二氢化钚 激发态 电偶极场 TD-DFT  相似文献   

14.
R.E. Raab 《Molecular physics》2013,111(5):1323-1331
Literature definitions of magnetic multipole moment operators are shown to be at variance, and new definitions are formulated which are consistent with a general multipole interaction hamiltonian and with the radiation field of a dynamic charge distribution. The applicability of traceless multipole moments is examined.

The multipole hamiltonian is used to derive expressions for some magnetic quadrupole distortion tensors. For those describing the quadrupole moment induced by a magnetic field and by a field gradient the number of independent components for various molecular symmetries is evaluated.  相似文献   

15.
蔡绍洪  周业宏  何建勇 《物理学报》2011,60(9):93102-093102
采用密度泛函B3LYP方法在6-311+ +G* *基组上优化了不同外电场作用下丙烯酸甲酯分子的基态几何结构、电偶极矩和分子的总能量,并且分析了分子的HOMO-3到LUMO+3轨道的能量变化,然后利用杂化CIS-DFT方法(CIS-B3LYP)在相同基组下探讨了无电场时丙烯酸甲酯分子前9个激发态的激发能、波长和振子强度和外电场对丙烯酸甲酯分子激发态的影响规律.结果表明,分子的几何构型与外电场大小有着较强的依赖关系.随着外电场的增大,分子总能量先增大后减小,电偶极矩μ先减小后增大,激发能随电场 关键词: 丙烯酸甲酯 外电场 振子强度 激发能  相似文献   

16.
Relativistic ab initio methods are used to compute the electric field gradient at the iodine nucleus in nine different closed-shell diatomic molecules. Combining these theoretical electric field gradients with experimental nuclear quadrupole coupling constants gives a consistent value of the nuclear quadrupole moment of 127I of—696(12)millibarn. We argue that this value is more precise than the current standard value of the nuclear quadrupole moment of 127I and recommend adjusting the reference value accordingly. The precision of this determination is still determined by technical limitations in the theoretical work, in particular the neglect of the two-electron Gaunt interaction in the Hamiltonian and correlation contributions beyond those described at the CCSD(T) level of theory, but the errors are reduced relative to the theoretical work that underlies the current standard value of this nuclear quadrupole moment. As a secondary study we also considered the calculation of the small electric field gradient at the gold nucleus in the AuI molecule and conclude that this computation remains a challenge for theoreticians.  相似文献   

17.
氯乙烯在外电场下的激发态结构研究   总被引:1,自引:0,他引:1       下载免费PDF全文
周业宏  蔡绍洪 《物理学报》2010,59(11):7749-7755
采用密度泛函B3P86方法在6-311G基组上优化了不同外电场作用下氯乙烯分子的基态几何结构、电偶极矩和分子的总能量,然后利用杂化CIS-DFT方法(CIS-B3P86)在相同基组下探讨了无电场时氯乙烯分子前9个激发态的激发能、波长和振子强度和外电场对氯乙烯分子激发态的影响规律.结果表明,分子的几何构型与外电场大小有着强烈的依赖关系.随着外电场的增大,分子总能量先增大后减小,电偶极矩μ先减小后增大.激发能随电场增加快速减小,表明在外电场作用下,氯乙烯分子易于激发和离解.激发态波长随电场的增大而不断增大,且其电子跃迁光谱都集中在紫外区.  相似文献   

18.
采用密度泛函(DFT)方法B3P86在6 311++G(d,p)基组水平上优化得到了分子轴方向不同电偶极 场(-0.04~0.04a.u.)作用下,二甲基硅酮的基态电子状态、几何结构、电偶极矩和分子总能量.在优化构型下 用同样的基组采用杂化CIS DFT方法(CIS B3P86)研究了同样外电场条件下对二甲基硅酮的激发能和振子强度 的影响.计算结果表明,分子几何构型与电场大小和方向呈现强烈的依赖,正向电场下基态偶极矩随电场强度线 性增加,分子总能量降低,当反向电场大于0.03a.u.时,偶极距方向改变,总能量增加;激发能随电场增加急剧减 小,且对电场方向的依赖呈现出不对称性,满足Grozema关系.电场对振子强度的影响比较复杂,但仍满足跃迁选 择定则.  相似文献   

19.
20.
Semiempirical molecular orbital calculations are applied to calculate electric field gradients Vzz and electronic charge densities ?(0) at the nucleus for a series of tin- and iodine-containing compounds. The results are related with experimental isomer shifts δ and quadrupole splittings ΔEq and enable an understanding of experimental Mössbauer spectra in terms of electronic structure theory. From this correlation new values for the fractional change δR/R of the nuclear radius and for the nuclear quadrupole moment Q can be derived. A careful analysis of the various contributions to Vzz and ?(0) determines the range of applicability of commonly used phenomenological fitting schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号