首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Effect of Wettability on Three-Phase Relative Permeability   总被引:3,自引:0,他引:3  
We study three-phase flow in water-wet, oil-wet, and fractionally-wet sandpacks. We use CT scanning to measure directly the oil and water relative permeabilites for three-phase gravity drainage. In an analogue experiment, we measure pressure gradients in the gas phase to determine the gas relative permeability. Thus we find all three relative permeabilities as a function of saturation. We find that the gas relative permeability is approximately half as much in a oil-wet medium than in an water-wet medium at the same gas saturation. The water relative permeability in the water-wet medium and the oil relative permeability in the oil-wet medium are similar. In the water-wet medium the oil relative permeability scales as k roS o 4 for S o>S or, where S or is the waterflood residual oil saturation. With octane as the oil phase, k roS o 2 for S o<S or, while with decane as the oil phase, k ro falls sharply for S o<S or. The water relative permeability in the oil-wet medium resembles the oil relative permeability in the water-wet medium for a non-spreading oil such as decane. These observations can be explained in terms of wetting, spreading, and the pore scale configurations of fluid.  相似文献   

2.
Lombardi  Ariel L.  Tarzia  Domingo A. 《Meccanica》2001,36(3):251-264
Similarity solutions for a mathematical model for thawing in a saturated semi-infinite porous medium is considered when change of phase induces a density jump and a heat flux condition of the type is imposed on the fixed face x=0. Different cases depending on physical parameters are analysed and the explicit solution is obtained if and only if an inequality for the thermal coefficient q 0 is verified. An improvement for the existence of a similarity solution for the same free boundary problem with a constant temperature on the fixed face x=0 is also obtained. Sommario. Vengono considerate soluzioni di similarità per un modello matematico di disgelo di un mezzo poroso saturo semi-infinito allorquando il cambiamento di fase induce un salto di densità ed una condizione di flusso di calore del tipo viene imposta sulla faccia fissa x=0. Si analizzano differenti casi dipendenti da parametri fisici e la soluzione esplicita viene ottenuta se e solo se risulta verificata una diseguaglianzo per il coefficiente termico q 0. Si ottiene altresi un miglioramento della condizione di esistenza di una soluzione di similarità per lo stesso problema al contorno libero con temperatura costante sulla faccia fissa x=0.  相似文献   

3.
The paper proposes a heuristic approach to constructing exact solutions of the hydrodynamic equations based on the specificity of these equations. A number of systems of hydrodynamic equations possess the following structure: they contain a reduced system of n equations and an additional equation for an extra function w. In this case, the reduced system, in which w = 0, admits a Lie group G. Taking a certain partially invariant solution of the reduced system with respect to this group as a seed:rdquo; solution, we can find a solution of the entire system, in which the functional dependence of the invariant part of the seed solution on the invariants of the group G has the previous form. Implementation of the algorithm proposed is exemplified by constructing new exact solutions of the equations of rotationally symmetric motion of an ideal incompressible liquid and the equations of concentrational convection in a plane boundary layer and thermal convection in a rotating layer of a viscous liquid.  相似文献   

4.
Nonequilibrium air–water mass transfer experiments using a laboratoryscale singleair channel setup were conducted to investigate the influence of porous media and air velocity on the fate of nonaqueous phase liquids (NAPLs) under air sparging conditions. Benzene was used as a NAPL while silica sand 30/50 (dp50=0.305mm, uniformity coefficient, UC=1.41) and silica sand 70/100 (dp50=0.168mm, UC=1.64) were used as porous media. Air velocities ranged from 0 to 1.4cm/s. Mass transfer coefficients for the dissolution of NAPLs were estimated by numerical methods using a twodimensional dissolution–diffusion–volatilization model. The study showed that the presence of advective airflow in air channels controlled the spreading of the dissolved phase but the overall removal efficiency was independent of airflow rate. Removal efficiencies and dissolution rates of the NAPL were found to be strongly affected by the mean particle size of the porous media during air sparging. More than 50% reduction in the removal rate of benzene was found when silica sand 70/100 was used instead of silica sand 30/50. Mass transfer coefficients for the dissolution of benzene NAPL were estimated to be 0.0041cm/min for silica sand 70/100 and 0.227cm/min for silica sand 30/50. Increasing the air velocity from 0.6 to 1.4cm/s for silica sand 30/50 did not result in a higher removal rate. Quantitative estimation of the dissolution rates of benzene NAPL indicated that the dissolution rates (between 0.227 and 0.265cm/min) were similar in magnitude for the same porous media but different air flow rates. Based on the visualization study, air sparging may be used to control the spreading of the dissolved phase even when the glob of NAPL is several centimeters away from the air–water interface of the air channels.  相似文献   

5.
We study and obtain formulas for the asymptotic behavior as ¦x¦ of C 2 solutions of the semilinear equation u=f(x, u), x (*) where is the complement of some ball in n and f is continuous and nonlinear in u. If, for large x, f is nearly radially symmetric in x, we give conditions under which each positive solution of (*) is asymptotic, as ¦x¦, to some radially symmetric function. Our results can also be useful when f is only bounded above or below by a function which is radially symmetric in x or when the solution oscillates in sign. Examples when f has power-like growth or exponential growth in the variables x and u usefully illustrate our results.  相似文献   

6.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

7.
Übersicht MitF(x, y) als Spannungsfunktion einer Welle ohne Nut und(, y) als Potentialfunktion des Quelle-Senke-Systems erhält man Spannungsfunktionen(, y) =F(x, y) –(, y) für Wellen mit tiefen Längsnuten. Es wird gezeigt, daß sich damit die Schubspannungen in den Läufern von Schraubenverdichtern ermitteln lassen.
Shearing stresses in shafts with deep longitudinal grooves
Summary The stress functions(, y) of shafts with deep longitudinal grooves may be represented by(, y) =F(x, y) –(, y) whereF(x, y) is the stress function of a cylindrical shaft without grooves and(, y) denotes the potential function of the source-sink system. It is shown that the shearing stresses in rotors of screw-compressors may be obtained in this way.
  相似文献   

8.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

9.
Zusammenfassung Diese Arbeit enthält Druck-Temperatur-Diagramme für 6 spezifische Zustandsgrößen und 16 erste Ableitungen und zusammengesetzte Größen von Wasser und Wasserdampf, die nach einem Gleichungssystem berechnet wurden, das unter dem Namen The 1968 IFC Formulation for Scientific and General Use von der 6. Internationalen Konferenz für die Eigenschaften des Wasserdampfes angenommen wurde. Einige Konsequenzen der thermodynamischen Konsistenz, das Verhalten im kritischen Gebiet und bei sehr kleinen Drücken werden diskutiert. Ferner werden die kinematische Viskosität und die Temperaturleitfähigkeit, sowie eine Beziehung zwischen dynamischer Viskosität und isenthalpem Drosselkoeffizienten angegeben.
This paper contains pressure-temperature diagrams for 6 properties and 16 first derivatives and combined terms for water and steam. These were calculated from a system of equations accepted by the 6th International Conference on the Properties of Steam, and called The 1968 IFC Formulation For Scientific and General Use. Some consequences of thermodynamic consistency, and the behaviour in the critical region and at very small pressures are discussed. Further, the kinematic viscosity and the thermal diffusivity and a relation between the dynamic viscosity and the throttling coefficient at constant enthalpy are given.

Bezeichnungen (s. auch Tabelle 1) k Temperaturleitfähigkeit:k=/c p - p Druck - r spezifische Verdampfungsenthalpie:r=hh - T thermodynamische oder Kelvin-Temperatur - t Celsius-Temperatur - dynamische Viskosität - Wärmeleitfähigkeit - v kinematische Viskosität:=/ - Dichte:=1/v Indices und Sättigungswerte des Dampfes und der Flüssigkeit Differenz der Sättigungswerte, z. B. h=hh  相似文献   

10.
S. Kase 《Rheologica Acta》1982,21(2):210-211
The general integral of the very simple equation 21/n/() was found to describe the cross sectional area of filaments of isothermal power law fluids while in transient stretching where is time and is the initial location of fluid molecules at time = 0 given as the distance from a reference point fixed in space. Any such stretching transient given as a solution of the above equation is physically realizable subject to the restrictions > 0 and/ < 0.  相似文献   

11.
Normal forms for random diffeomorphisms   总被引:1,自引:0,他引:1  
Given a dynamical system (,, ,) and a random diffeomorphism (): d d with fixed point at x=0. The normal form problem is to construct a smooth near-identity nonlinear random coordinate transformation h() to make the random diffeomorphism ()=h()–1() h() as simple as possible, preferably linear. The linearization D(, 0)=:A() generates a matrix cocycle for which the multiplicative ergodic theorem holds, providing us with stochastic analogues of eigenvalues (Lyapunov exponents) and eigenspaces. Now the development runs pretty much parallel to the deterministic one, the difference being that the appearance of turns all problems into infinite-dimensional ones. In particular, the range of the homological operator is in general not closed, making the conceptof-normal form necessary. The stochastic versions of resonance and averaging are developed. The case of simple Lyapunov spectrum is treated in detail.  相似文献   

12.
We are concerned with the coerciveness of the strain energy E(u) (in linear elasticity) associated with a displacement vector u on the Sobolev space H1 () or its subspaces, a domain in n representing an isotropic elastic body—certain specific cases are called Korn's inequalities. Sufficient (and necessary) conditions on the Lamé moduli for E(·) to be coercive (or uniformly positive) on such spaces are given, and the associated best possible constants are obtained for some cases.  相似文献   

13.
On laminar flow through a uniformly porous pipe   总被引:2,自引:0,他引:2  
Numerous investigations ([1] and [4–9]) have been made of laminar flow in a uniformly porous circular pipe with constant suction or injection applied at the wall. The object of this paper is to give a complete analysis of the numerical and theoretical solutions of this problem. It is shown that two solutions exist for all values of injection as well as the dual solutions for suction which had been noted by previous investigators. Analytical solutions are derived for large suction and injection; for large suction a viscous layer occurs at the wall while for large injection one solution has a viscous layer at the centre of the channel and the other has no viscous layer anywhere. Approximate analytic solutions are also given for small values of suction and injection.

Nomenclature

General r distance measured radially - z distance measured along axis of pipe - u velocity component in direction of z increasing - v velocity component in direction of r increasing - p pressure - density - coefficient of kinematic viscosity - a radius of pipe - V velocity of suction at the wall - r 2/a 2 - R wall or suction Reynolds number, Va/ - f() similarity function defined in (6) - u 0() eigensolution - U(0) a velocity at z=0 - K an arbitrary constant - B K Bernoulli numbers Particular Section 5 perturbation parameter, –2/R - 2 a constant, –K - x / - g(x) f()/ Section 6 perturbation parameter, –R/2 - 2 a constant, –K - g() f() - g c ()=g() near centre of pipe - * point where g()=0 Section 7 2/R - 2 K - t (1–)/ - w(t, ) [1–f(t)]/ - 0, 1 constants - g() f()– 0 - 0/ - 0 a constant - * point where f()=0  相似文献   

14.
Since the temperature is not an additive function, the traditional thermodynamic point of view suggests that the volume integral of the temperature has no precise physical meaning. This observation conflicts with the customary analysis of non-isothermal catalytic reactors, heat pipes, driers, geothermal processes, etc., in which the volume averaged temperature plays a crucial role. In this paper we identify the thermodynamic significance of the volume averaged temperature in terms of a simple two-phase heat transfer process. Given the internal energy as a function of the point temperature and the density
we show that the volume averaged internal energy is represented by e = F(T , )when e is a linear function of T and , or when the traditional length-scale constraints associated with the method of volume averaging are satisfied. When these conditions are not met, higher order terms involving the temperature gradient and the density gradient appear in the representation for e .  相似文献   

15.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

16.
This paper presents a new formulation for the laminar free convection from an arbitrarily inclined isothermal plate to fluids of any Prandtl number between 0.001 and infinity. A novel inclination parameter is proposed such that all cases of the horizontal, inclined and vertical plates can be described by a single set of transformed equations. Moreover, the self-similar equations for the limiting cases of the horizontal and vertical plates are recovered from the transformed equations by setting=0 and=1, respectively. Heated upward-facing plates with positive and negative inclination angles are investigated. A very accurate correlation equation of the local Nusselt number is developed for arbitrary inclination angle and for 0.001 Pr .
Wärmeübertragung bei freier Konvektion an einer isothermen Platte mit beliebiger Neigung
Zusammenfasssung Diese Untersuchung stellt eine neue Formulierung der laminaren freien Konvektion von Flüssigkeiten mit einer Prandtl-Zahl zwischen 0,001 und unendlich an einer beliebig schräggestellten isothermen Platte dar. Ein neuer Neigungsparameter wird eingeführt, so daß alle Fälle der horizontalen, geneigten oder vertikalen Platte von einem einzigen Satz transformierter Gleichungen beschrieben werden können. Die unabhängigen Gleichungen für die beiden Fälle der horizontalen and vertikalen Platte wurden für=0 und=1 aus den transformierten Gleichungen wieder abgeleitet. Es wurden erwärmte aufwärtsgerichtete Platten mit positiven und negativen Neigungswinkeln untersucht. Eine sehr genaue Gleichung wurde für die lokale Nusselt-Zahl bei beliebigen Neigungswinkeln und für 0,001 Pr entwickelt.

Nomenclature C p specific heat - f reduced stream function - g gravitational acceleration - Gr local Grashof number,g(T w T w ) x3/v2 - h local heat transfer coefficient - k thermal conductivity - n constant exponent - Nu local Nusselt number,hx/k - p pressure - Pr Prandtl number, v/ - Ra local Rayleigh number,g(T w T )J x3/v - T fluid temperature - T w wall temperature - T temperature of ambient fluid - u velocity component in x-direction - v velocity component in y-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra¦sin¦)1/4/( Ra cos()1/5 - pseudo-similarity variable, (y/) - dimensionless temperature, (TT )/(T wT ) - ( Ra cos)1/5+(Rasin)1/4 - v kinematic viscosity - 1/[1 +(Ra cos)1/5/( Ra¦sin)1/4] - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of plate inclination measured from the horizontal - stream function - dimensionless dynamic pressure  相似文献   

17.
Knowles' representation theorem for harmonically time-dependent free surface waves on a homogeneous, isotropic elastic half-space is extended to include harmonically time-dependent free processes for thermoelastic surface waves in generalized thermoelasticity of Lord and Shulman and of Green and Lindsay.r , , r , , .This work was done when author was unemployed.  相似文献   

18.
We study the Cauchy problem for a strictly hyperbolic n×n system of conservation laws in one space dimension assuming that the initial data has bounded but possibly large total variation. Under a linearized stability condition on the Riemann problems generated by the jumps in we prove existence and uniqueness of a (local in time) BV solution, depending continuously on the initial data in L1loc. The last section contains an application to the 3×3 system of gas dynamics.  相似文献   

19.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

20.
The dynamics of an analytic reversible vector field (X,) is studied in with one real parameter close to 0; X=0 is a fixed point. The differential Dx (0,0) generates an oscillatory dynamics with a frequency of order 1—due to two simple, opposite eigenvalues lying on the imaginary axis—and it also generates a slow dynamics which changes from a hyperbolic type—eigenvalues are —to an elliptic type—eigenvalues are —as passes trough 0. The existence of reversible homoclinic connections to periodic orbits is known for such vector fields. In this paper we study a particular subclass of such vector fields, obtained by small reversible perturbations of the normal form. We give an explicit condition on the perturbation, generically satisfied, which prevents the existence of a homoclinic connections to 0 for the perturbed system. The normal form system of any order admits a reversible homoclinic connection to 0, which then does not survive under perturbation of higher order. It will be seen that normal form essentially decouples the hyperbolic and elliptic part of the linearization to any chosen algebraic order. However, this decoupling does not persist arbitrary reversible perturbation, which finally causes the appearance of small amplitude oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号