首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical oxidation of sulfur amino acids, i.e., cysteine, cystine, and methionine, is studied on a glassy carbon electrode modified by a film of nickel(II) polytetrasulfophthalocyanine (poly-NiTsPc). Poly-NiTsPc demonstrates a selective mediator activity in the oxidation of sulfur amino acids, depending on the pH of solution. The proper conditions for fabricating a polymer film on the surface of glassy carbon are found and the conditions of registering the maximal electrocatalytic effect on the modified electrode are determined. A procedure is proposed for the voltammetric determination and amperometric detection of cysteine, cystine, and methionine on an electrode coated by a poly-NiTsPc film under the conditions of flow-injection analysis (FIA). The linear relation of the electrocatalytic response of a composite electrode to amino acid concentration is observed to the level n × 10?6 M in the static mode and n × 10?9 M under FIA conditions.  相似文献   

2.
A highly sensitive electrochemical sensor was prepared for the determination of L-cysteine using a modified multiwall carbon nanotubes paste electrode in the presence of 3,4-dihydroxycinnamic acid(3,4-DHCA) as a mediator, based on an electrocatalytic process. The results indicate that the electrode is electrocatalytically efficient for the oxidation of L-cysteine in the presence of 3,4-DHCA. The interaction between the mediator and L-cysteine can be used for its sensitive and selective determination. Using chronoamperometry, the catalytic reaction rate constant was calculated to be 2.37 × 102 mol–1 L s–1. The catalytic peak current was linearly dependent on the L-cysteine concentration in the range of 0.4–115 μmol/L. The detection limit obtained by linear sweep voltammetry was 0.25 μmol/L. Finally, the modified electrode was examined as a selective, simple, and precise new electrochemical sensor for the determination of L-cysteine in real samples.  相似文献   

3.
Stable lipid film was made by casting dipalmitoylphosphatidylcholine (DPPC) and rutin onto the surface of a glassy carbon (GC) electrode. The electrochemical behavior of rutin in the DPPC film was studied. The modified electrode coated with rutin gave quasi-reversible reduction-oxidation peak on cyclic voltammogram in the phosphate buffer (pH 7.4). The peak current did not decrease apparently after stored at 4°C for 8 hours in refrigerator. This model of biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by rutin. Rutin in the film acts as a mediator. The modified electrode shows a great enhancement and the anodic peak potential was reduced by about 220 mV in the oxidation of 5×10−3 mol L−1 NADH compared with that obtained at a bare glassy carbon electrode.  相似文献   

4.
The 10 wt % polyaniline/CuGeO3 nanowire modified glassy carbon electrode has been used for the electrochemical determination of L-cysteine. The electrochemical behavior of L-cysteine at the 10 wt % polyaniline/CuGeO3 nanowire modified glassy carbon electrode has been investigated. The intensities of the anodic cyclic voltammogram (CV) peaks of L-cysteine at the modified electrode increase linearly with the increase of the L-cysteine content in the range of 0.001–2 mM and scan rate ranging from 25 to 200 mV s?1. 10 wt % polyaniline/CuGeO3 nanowire modified glassy carbon electrode exhibits good reproducibility, stability and low detection limit of 1.7 and 0.44 μM for cvpl and cvp2, respectively. The polyaniline combined with the CuGeO3 nanowires can improve the electrochemical detection ability of L-cysteine.  相似文献   

5.
A sensitive and selective electrochemical method for the determination of L-cysteine was developed using a modified carbon paste electrode (MCPE) with quinizarine. Cyclic voltammetry was used to investigate the redox properties of this modified electrode at various solution pH values and at various scan rates. The apparent charge transfer rate constant, ks and transfer coefficient for electron transfer between quinizarine and carbon paste electrode (CPE) were calculated as 2.76 s?1 and 0.6, respectively. This modified carbon paste electrode shows excellent electrocatalytic activity toward the oxidation of L-cysteine in a phosphate buffer solution (pH 7.0). The linear range of 1.0 × 10?6 to 1.0 × 10?3 M and a detection limit (3s) of 2.2 × 10?7 M were observed in pH 7.0 phosphate buffer solutions. In differential pulse voltammetry, the quinizarine modified carbon paste electrode (QMCPE) could separate the oxidation peak potentials of L-cysteine and tryptophan present in the same solution, though at the unmodified CPE the peak potentials were indistinguishable. This work introduces a simple and easy approach to selective detection of L-cysteine in the presence of tryptophan. Also, the modified electrode was employed for the determination of L-cysteine in the real samples such as serum of blood and acetylcysteine tablet.  相似文献   

6.
Diphenylamine (DPA) monomers have been electropolymerized on the amino‐functionalized multiwalled carbon nanotube (AFCNT) composite film modified glassy carbon electrode (GCE) by cyclic voltammetry (CV). The surface morphology of PDPA‐AFCNT was studied using field‐emission scanning electron microscopy (FE‐SEM). The interfacial electron transfer phenomenon at the modified electrode was studied using electrochemical impedance spectroscopy (EIS). The PDPA‐AFCNT/GCE represented a multifunctional sensor and showed good electrocatalytic behavior towards the oxidation of catechol and the reduction of hydrogen peroxide. Rotating‐disk electrode technique was applied to detect catechol with a sensitivity of 1360 µA mM?1 cm?2 and a detection limit of 0.01 mM. Amperometric determination of hydrogen peroxide at the PDPA‐AFCNT film modified electrode results in a linear range from 10 to 800 µM, a sensitivity of 487.1 µA mM?1 cm?2 and detection limit of 1 µM. These results show that the nano‐composite film modified electrode can be utilized to develop a multifunctional sensor.  相似文献   

7.
The electrochemical behavior of levodopa (LD) was investigated on the surface of a carbon paste electrode modified with TiO2 nanoparticles and 2,2??-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone (BNH). The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of LD, leading to a remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction. The mechanism of the electrocatalytic process on the surface of the modified electrode was analyzed by obtaining the cyclic voltammograms in various potential sweep rates. This modified electrode exhibited well-separated oxidation peaks for LD and carbidopa (CD). The differential pulse voltammetry was applied as a very sensitive analytical method for the determination of LD and CD. A linear dynamic range of 2.0?C600.0 and 20.0?C400.0???M with a detection limit of 0.2???M (with sensitivity of 0.199 ??A ??M?1) and 10???M (with sensitivity of 0.024???A???M?1) was obtained for LD and CD, respectively. The modified electrode was prepared quite easily and renewed on the surface by simple polishing.  相似文献   

8.
The direct electrochemistry of herring sperm double-stranded DNA (dsDNA) on an ionic liquid N-butylpyridinium hexafluorophosphate modified carbon paste electrode was investigated. The cyclic voltammogram showed two irreversible oxidation peaks at 0.868 V and 1.188 V (vs. SCE), which corresponded to the oxidation of guanine and adenine residues, respectively. Compared to the common carbon paste electrode the electrochemical response was greatly improved. The electrochemical behavior of dsDNA on the modified electrode was carefully investigated with the electrochemical parameters were calculated. Under optimal conditions the dsDNA can be directly determined in the concentration range from 50 to 600 μg mL?1 with a detection limit of 17 μg mL?1 (3σ).  相似文献   

9.
A novel L-cysteine film modified electrode has been fabricated by means of an electrochemical oxidation procedure, and it was successfully applied to the electrochemical determination of acetaminophen. This method utilizes the electrooxidation of amines to their analogous cation radicals to form a chemically stable covalent linkage between the nitrogen atom of the amine and edge plane sites at the glassy carbon electrode surface. The electrochemical behaviour of acetaminophen at the film electrode was investigated in 0.1 mol L−1 phosphate buffer (pH 6.20). It was found that the redox peak current of acetaminophen was enhanced greatly on the film electrode. Linearity between the oxidation peak current and the acetaminophen concentration was obtained in the range of 1.0 × 10−4–2.0 × 10−7 mol L−1 with a detection limit of 5.0 × 10−8 mol L−1. For seven parallel detections of 1.0 × 10−5 mol L−1 acetaminophen, the relative standard deviation (RSD) was 1.46%, suggesting that the film electrode has excellent reproducibility. Application to the determination of acetaminophen in drug tablets and human urine demonstrated that the film electrode has good stability and high sensitivity.  相似文献   

10.
A sensitive electrochemical method was proposed for the determination of adenosine-5′-diphosphate (ADP) on an ionic liquid (IL) 1-(3-chloro-2-hydroxy-propyl)-3-methylimidazole chloride modified carbon paste electrode (CPE) in a pH 4.5 Britton-Robinson (B-R) buffer solution. Compared with CPE, IL modified CPE (CILE) showed strong electrocatalytic ability to promote the electrochemical oxidation of ADP. A well-defined irreversible oxidation peak of ADP appeared at +1.381 V with an adsorption-controlled process, which was due to the presence of high conductive IL on the electrode. The experimental conditions were optimized and the electrochemical parameters of ADP were calculated with the electron transfer coefficient (α) as 0.293, the electron transfer number (n) as 1.23, the apparent heterogeneous electron transfer rate constant (k s) as 3.325 × 10?6 s?1 and the surface coverage (ΓT) as 0.92 × 10?8 mol/cm2. Under the optimum conditions, the oxidation peak current was linear to ADP concentration in the range from 3.0 to 1000.0 μmol/L with the detection limit as 2.78 μmol/L (3σ) by differential pulse voltammetry. The CILE also eliminated the interferences of commonly coexisting substances and was successfully applied to detect the ADP artificial samples.  相似文献   

11.
An electrochemical method for the preparation of poly(pyronin B) film was proposed in this paper. A poly(pyronin B) (poly(PyB)) film modified glassy carbon electrode (GCE) has been fabricated via an electrochemical oxidation procedure and applied to the electrocatalytic oxidation of reduced form of nicotinamide adenine dinucleotide (NADH). The poly(PyB) film modified electrode surface has been characterized by atomic force microscope (AFM), scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), UV‐visible absorption spectrophotometry (UV‐vis) and cyclic voltammetry (CV). These studies have been used to investigate the poly(PyB) film, which demonstrates the formation of the polymer film and the excellent electroactivity of poly(PyB) in neutral and even in alkaline media. Due to its potent catalytic effects towards the electrooxidation of NADH at lower potential (0.0 V), poly(PyB) film modified electrode can be used for the selective determination of NADH in real samples because of dopamine, ascorbic acid and uric acid oxidation can be avoided at this potential. The catalytic peak currents are linearly dependent on the concentrations of NADH in the range of 1.0×10?6 to 5.0×10?4 mol/L with correlation coefficients of 0.999. The detection limits for NADH is 0.5×10?6 mol/L. Poly(PyB) modified electrode also shows good stability and reproducibility due to the irreversible attachment of polymer film at GCE surface.  相似文献   

12.
Cobalt hydroxide film modified electrode was prepared by depositing cobalt hydroxide on glassy carbon electrode (GCE) surface in an alkaline aqueous solution and then characterized by cyclic voltammetry. The electrochemical behavior of resorcin on the film modified electrode was investigated. The results show that cobalt hydroxide films in alkaline solutions have good electrocatalytical activity towards the oxidation of resorcin. The recovery of resorcin from sample ranged from 95.2 to 103.4% and the oxidation peak currents were directly proportional to the resorcin concentration from 5.0 × 10−6 to 1.05 × 10−4 M with correlation coefficient of 0.9986. A detection limit of 1.0 × 10−7 M for resorcin was estimated. Various factors affecting the electrocatalytical activity of cobalt hydroxide film were investigated in detail. Real water samples were analyzed and satisfactory results were obtained.  相似文献   

13.
Polynuclear mixed‐valent films of cobalt oxide and cobalt hexacyanoferrate (CoOCoHCF) have been deposited on electrode surfaces from a solution of Co2+ and Fe(CN)63? ions by repetitive potential cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance measurements demonstrate the steady growth of modified film. The effect of type of monovalent cations as well as acidity of the supporting electrolyte on film growth and redox behavior of resulting film was investigated. In pure supporting electrolyte, electrochemical responses of modified electrode resemble with that of a surface immobilized redox couple. The hybrid film electrodes showed electrocatalytic activity toward oxidation of NADH, hydrazine and hydroxylamine. The feasibility of using our modified electrodes for analytical application was also explored.  相似文献   

14.
Copper complex dye (C.I. Direct Blue 200) film modified electrodes have been prepared by multiple scan cyclic voltammetry. The effect of solution pH and nature of electrode material on film formation was investigated. The optimum pH for copper complex film formation on glassy carbon was found to be 1.5. The mechanism of film formation on ITO seems to be similar to that on GC surface but completely different mechanism followed with gold electrode. Cyclic voltammetric features of our modified electrodes are in consistent with a surface‐confined redox process. The voltammetric response of modified electrode was found to be depending on pH of the contacting solution. UV‐visible spectra show that the nature of copper complex dye is identical in both solution phase and after forming film on electrode. The electrocatalytic behavior of copper complex dye film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of SO52? was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on film electrode compared to bare glassy carbon electrode. Feasibility of utilizing our modified electrode in analytical estimation of dopamine, ascorbic acid was also demonstrated.  相似文献   

15.
A graphene, chitosan and Fe3O4 nanoparticles (nano-Fe3O4) modified glassy carbon electrode (graphene-chitosan/nano-Fe3O4/GCE) was fabricated. The modified electrode was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The electrochemical oxidation behavior of guanosine was investigated in pH 7.0 phosphate buffer solution by cyclic voltammetry and differential pulse voltammetry. The experimental results indicated that the modified electrode exhibited an electrocatalytic and adsorptive activities towards the oxidation of guanosine. The transfer electron number (n), transfer proton number (m) and electrochemically effective surface area (A) were calculated. Under the optimized conditions, the oxidation peak current was proportional to guanosine concentration in the range of 2.0 × 10−6 to 3.5 × 10−4 mol L−1 with the correlation coefficient of 0.9939 and the detection limit of 7.5 × 10−7 mol L−1 (S/N = 3). Moreover, the modified electrode showed good ability to discriminate the electrochemical oxidation response of guanosine, guanine and adenosine. The proposed method was further applied to determine guanosine in spiked urine samples and traditional Chinese medicines with satisfactory results.  相似文献   

16.
The electrochemical behaviors of guanosine on the ionic liquid of N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CPE) was studied in this paper and further used for guanosine detection. Guanosine showed an adsorption irreversible oxidation process on the carbon ionic liquid electrode (CILE) with the oxidation peak potential located at 1.12 V (vs. SCE) in a pH 4.5 Britton-Robinson (B-R) buffer solution. Compared with that on the traditional carbon paste electrode, small shift of the oxidation peak potentials appeared but with a great increment of the oxidation peak current on the CILE, which was due to the presence of ionic liquid in the modified electrode adsorbed the guanosine on the surface and promoted the electrochemical response. The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n), and the electrode reaction standard rate constant (ks) were calculated as 0.74, 1.9 and 1.26 × 10−4 s−1, respectively. Under the optimal conditions the oxidation peak current showed a good linear relationship with the guanosine concentration in the range from 1.0 × 10−6 to 1.0 × 10−4 mol/L by cyclic voltammetry with the detection limit of 2.61 × 10−7 mol/L (3σ). The common coexisting substances showed no interferences to the guanosine oxidation. The CILE showed good ability to distinguish the electrochemical response of guanosine and guanine in the mixture solution. The urine samples were further detected by the proposed method with satisfactory results.  相似文献   

17.
The present work describes preparation of hemoglobin‐incorporated multiwalled carbon nanotubes‐poly‐L ‐lysine (MWCNT‐PLL)/Hb) composite modified electrode film modified glassy carbon electrode (GCE) and its electrocatalytic behavior towards reduction of bromate ( ) in 0.1 M acetate buffer (pH 5.6). The modified electrode has been successfully fabricated by immobilizing hemoglobin on MWCNT dispersed in poly‐L ‐lysine. The surface morphologies of MWCNT, PLL and Hb were characterized using atomic force microscopy (AFM). The voltammetric features suggested that the charge transport through the film was fast and the electrochemical behavior resembles that of surface‐confined redox species. Cyclic voltammetry was used to investigate the electrocatalytic behavior of the modified electrode towards bromate and was compared with that of the CNT‐modified as well as bare electrode. The analytical determination of bromate has been carried out in stirred solution at an optimized potential with a sensitivity of 7.56 μA mM?1 and the calibration curve was linear between 1.5×0?5 to 6.0×0?3 M.  相似文献   

18.
《Electroanalysis》2004,16(8):674-683
The cobalt hexacyanoferrate film (CoHCF) was deposited on the surface of a glassy carbon (GC) electrode with a potential cycling procedure in the presence and absence of the cationic surfactant, cetyl trimethylammonium bromide (CTAB), to form CoHCF modified GC (CoHCF/GC) electrode. It was found that CTAB would affect the growth of the CoHCF film, the electrochemical behavior of the CoHCF film and the electrocatalytic activity of the CoHCF/GC electrode towards the electrochemical oxidation of dopamine (DA). The reasons of the electrochemical behavior of CoHCF/GC electrode influenced by CTAB were investigated using FTIR and scanning electron microscope (SEM) techniques. The apparent rate constant of electrocatalytic oxidation of DA catalyzed by CoHCF was determined using the rotating disk electrode measurements.  相似文献   

19.
A very stable electroactive film of catechin was electrochemically deposited on the surface of activated glassy carbon electrode. The electrochemical behavior of catechin modified glassy carbon electrode (CMGCE) was extensively studied using cyclic voltammetry. The properties of the electrodeposited films, during preparation under different conditions, and the stability of the deposited film were examined. The charge transfer coefficient (α) and charge transfer rate constant (k s) for catechin deposited film were calculated. It was found that the modified electrode exhibited excellent electrocatalytic activity toward hydrazine oxidation and it also showed a very large decrease in the overpotential for the oxidation of hydrazine. The CMGCE was employed to study electrocatalytic oxidation of hydrazine using cyclic voltammetry, rotating disk voltammetry, chronoamperometry, amperometry and square-wave voltammetry as diagnostic techniques. The catalytic rate constant of the modified electrode for the oxidation of hydrazine was determined by cyclic voltammetry, chronoamperometry and rotating disk voltammetry and was found to be around 10−3 cm s−1 . In the used different voltammetric methods, the plot of the electrocatalytic current versus hydrazine concentration is constituted of two linear segments with different ranges of hydrazine concentration. Furthermore, amperometry in stirred solution exhibits a detection limit of 0.165 μM and the precision of 4.7% for replicate measurements of 40.0 μM solution of hydrazine.  相似文献   

20.
The effect of various deposition techniques, electrode materials and posttreatment with tetrabutylammonium and tetrabutylphosphonium salts on the electrochemical behavior and stability of various Prussian blue (PB) modified electrodes, namely PB modified glassy carbon electrodes, silicate‐film supported PB modified glassy carbon electrodes, PB‐doped silicate glassy carbon electrodes, PB modified carbon ceramic electrodes using electrochemical deposition and PB modified carbon ceramic electrodes using chemical deposition is reported. Cyclic voltammetry and amperometric measurements of hydrogen peroxide were performed in a flow injection system while the carrier phosphate buffer (pH 7.0) with a flow rate of 0.8 mL min?1 was propelled into the electrochemical flow through cell housing the PB modified working electrode as well as an Ag|AgCl|0.1 M KCl reference and a Pt auxiliary electrode. The results showed that the deposition procedure, electrode material and posttreatment with additional chemicals can significantly alter the stability and electrochemical behavior of the PB film. Among the studied PB modified electrodes, those based on carbon ceramic electrodes modified with a film of electropolymerized PB showed the best electrochemical stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号