首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The anodic oxidation of serine anion on smooth (Pt) and platinized (Pt(Pt)) platinum electrodes is studied by the methods of cyclic and linear voltammetry, rotating disk electrode, coulometry, and reflectance IR spectroscopy. On both electrodes, the potential regions of electrochemical transformation of this amino acid are determined. It is shown that electrooxidation of serine proceeds with abstraction of 4 and 2 electrons on Pt and Pt(Pt) electrodes, respectively. It is found that the anodic oxidation of serine anions proceeds from the adsorbed state; a possible kinetic scheme of this process is proposed.  相似文献   

2.
《Analytical letters》2012,45(14):1717-1722
Abstract

An electrode consisting of platinized reticulated vitreous carbon (Pt/RVC) which behaves as a conventional platinized platinum electrode is described. The Pt/RVC electrode has been used to study the products of CO2 reduction by Had at potentials below 0.0V vs. NHE in acidic solution. Formic acid is proposed as the main product of this reaction.  相似文献   

3.
The relationship between the concentration of quinone groups in the electrode material containing carbon nanotubes (CNTs) and platinized carbon black and the efficiency of the use of the platinum surface in oxygen reduction was studied by cyclic voltammetry and rotating disc electrode methods. The effect of quinone groups on the oxygen coverage of the platinum surface and the density of the kinetic currents of molecular oxygen reduction on the platinum surface was investigated. A mechanism by which the oxygen-modified CNTs affect the kinetics of oxygen electroreduction on platinum was suggested.  相似文献   

4.
6 and 7-substituted 2-amino-4-hydroxy-5,6,7,8-tetrahydropteridines are oxidized at a platinum electrode in several waves in the potential range between hydrogen and oxygen evolution potentials. The electrode process in the first (main) anodic wave was investigated in more detail using a stationary and rotating disc platinum electrode. The process in this wave is “semireversible” with an exchange of two electrons. The standard rate constants of this reaction were determined. The oxidation product is deactivated by an irreversible chemical reaction. Some of the products block the surface of the electrode.  相似文献   

5.
甲醇在欠电位沉积Sn/Pt电极上催化氧化   总被引:10,自引:0,他引:10  
在欠电位沉积(upd)锡修饰的铂电极(upd-Sn/Pt)上,对甲醇电化学催化氧化过程进行了研究.发现当Pt表面upd-Sn的覆盖率在20%附近时,对甲醇的催化氧化的增强作用最为明显;在电位低于0.35 V (vs RHE)时,甲醇在Pt与upd-Sn/Pt电极上氧化只进行到脱氢生成CO的步骤;在0.35 V以后,表面Sn-OH形成,反应Sn-OH+COads=Sn+CO2+H++e有利于表面CO的去除;而Pt电极上,只有0.6 V以后,才有反应Pt-OH+COads=Pt+CO2+H++e发生.因此,Sn的存在有利于甲醇在较低的电位下氧化; Pt电极上CH3OH脱氢并释放出电子的过程是一个快速的过程,表面CO的去除是甲醇氧化过程的控制步骤;甲醇氧化产生的表面吸附态CO 以线式吸附为主,少量的桥式吸附态CO在反应初期即达到吸附饱和; Pt表面上upd-Sn表现的催化增强作用,在光亮铂电极和在高分散铂黑电极上是一致的.  相似文献   

6.
By potentiodynamic polarization of mechanically polished tantalum in a diluted aqueous solution of hexachloroplatinic acid, droplet-like platinum microparticles were electrodeposited, embedded into the simultaneously formed Ta2O5 film. The roughness factor of platinum of 31 was achieved. Within the potential region of both hydrogen and oxygen underpotential deposition, in both acidic and alkaline solutions, the composite Pt/Ta2O5 electrode displayed an excellent electrochemical response characteristic of smooth polycrystalline platinum. The preparation method applied in this work presents an easy way to obtain an electrode surface combining the behaviour of smooth polycrystalline platinum with the behaviour of microdisc arrays. Its electrocatalytic effectiveness was demonstrated for an oxygen reduction reaction in alkaline solutions.  相似文献   

7.
The stability of platinized catalytic electrodes prepared by thermal decomposition of hexachloroplatinic acid was investigated. The platinum on the electrode did not dissolve in the presence of the electrolyte containing an iodide/triiodide redox couple, even under anodic bias. The electrocatalytic activity of platinized catalytic electrodes sealed in a cell with oxygen‐free electrolyte did not decrease within 23 weeks. However, the charge transfer resistance value of platinized catalytic electrodes increased tenfold when the electrodes were heated at 150° for 15 min in air during the sealing process and doubled when the electrodes were reused. The XPS analysis results showed that part of the platinum catalyst on the surface of the electrode was transformed to Pt[II] and Pt[IV] during the thermal sealing process, which led to the decrease of catalytic activity of the platinized catalytic electrodes for the reduction of triiodide. A large amount of inactive iodine absorbed on the surface of the reused electrode, which was confirmed by XPS, also decreased the electrocatalytic activity of the electrodes. The electrocatalytic activity of reused electrodes can be recovered by heating again at 390 °C or removing the platinum oxide and inactive iodine by the electrochemical method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Platinized nickel and cobalt coatings, Pt(Ni) and Pt(Co), have been prepared on glassy carbon, GC, rotating disc electrode substrates by a two-step room temperature procedure that involved the electrodeposition of nickel and cobalt layers and their spontaneous partial replacement by platinum (“transmetalation”) when immersed into a chloroplatinic acid solution. By tuning the quantity of initially deposited nickel and cobalt, Pt(Ni) and Pt(Co) bimetallic coatings having a 26% atom Ni and 30% atom Co composition have been prepared. For both materials typical Pt surface electrochemistry was recorded during fast voltammetry in deaerated acid, pointing to the existence of a continuous Pt skin over a Pt–Ni and Pt–Co core. Oxygen reduction at the Pt(Ni)/GC and Pt(Co)/GC electrodes was studied by means of steady-state voltammetry at a rotating disc electrode and the construction of Tafel plots from corresponding voltammetric data. It was found that, when the initial potential of the voltammetric sweep allowed the formation of a complete Pt oxide monolayer, then oxygen reduction was hindered for low overpotentials at Pt(Ni) and Pt(Co), compared to pure bulk Pt. On the other hand, when the initial potential was less positive (thus leading to the formation of a fraction of surface oxide monolayer) the presence of Ni and Co enhanced the kinetics of oxygen reduction. The former behaviour is attributed to a decrease in oxide reduction ability of Pt in the presence of Ni and Co, while the latter to an increase in dissociative oxygen chemisorption due to Ni and Co.  相似文献   

9.
Open-circuit potential transients are measured under the conditions of methanol interaction with the pre-adsorbed oxygen at platinized platinum electrode. The time necessary for complete removal of the adsorbed oxygen monolayer appeared being shorter by a factor of ~1.5 as compared with smooth polycrystalline platinum. The dependence of platinum surface coverage with adsorbed oxygen on the potential during its decay is found. It was shown that the reaction of methanol with the adsorbed oxygen is most slow at a high coverage (1–0.8). It is suggested that at these coverages, like the case of polycrystalline platinum, the adsorbed oxygen directly interacts with the methanol molecules from the solution. At moderate coverages (0.8–0.2), the reaction of the adsorbed oxygen with methanol at the platinized platinum is better described by the “conjugated reactions” mechanism. The specific rates of the methanol dissociative adsorption at the platinized platinum turned out to be close to those observed earlier for the polycrystalline platinum.  相似文献   

10.
采用氩弧熔炼后热处理方法制备了PtBi金属间化合物材料.采用循环伏安法和旋转圆盘电极进行电化学性能测试.通过在0.5 mol•L-1 H2SO4+0.25 mol•L-1 CH3OH溶液中对氧还原的起始电位和电流密度大小比较发现,与光滑铂电极相比,PtBi金属间化合物具有良好的氧还原催化性能和抗甲醇中毒性能.从结构方面分析了PtBi具有抗甲醇中毒性能的原因,认为是PtBi中Pt-Pt的间距大,不利于甲醇的吸附解离. X射线光电子能谱(XPS)结果表明,PtBi材料中Pt的d电子空穴增加,可能是导致PtBi电极表面氧还原电流增大的原因.  相似文献   

11.
本文通过RDE和EIS联合技术、等效电路模型,研究了酸性体系中商业Pt/C催化剂ORR行为. 研究发现Pt/C动态界面包括两个彼此独立的过程:1)Pt表面原有PtO还原至Pt过程,2)ORR促进新PtO形成过程,为催化材料稳定性及活化性提供了关键依据;并发现动态界面促进多孔电极重构以及与传输匹配过程.在高过电位下,ORR的高反应速率可通过增加催化材料憎水性予以改善. 上述研究结果可对ORR的直流电化学研究进行有效补充,并提供建模基础.  相似文献   

12.
离子注入Pt的玻碳电极上甲酸和甲醛的电氧化   总被引:3,自引:0,他引:3  
制备了离子注入Pt的玻碳电极(Pt/GC),注入剂量为5×1017ion/cm2,此电极的表面组成和各元素的浓度-深度分布用AES测量,注入Pt的价态用XPS测量.在0.5mol/LHClO4溶液中,用Pt/GC电极和纯Pt电极研究了甲酸的电氧化行为,并在五种不同种类的电解质溶液中研究了甲醛的电氧化行为.结果表明,Pt/GC电极对甲酸和甲醛的电催化性能按真实表面积计算优于纯Pt电极.这可能与离子注入Pt过程中形成纳米团簇有关.此外,在同一电极上,甲醛在不同种类的电解质溶液中产生不同的氧化电流.说明阴离子对甲醛的电氧化过程有明显影响  相似文献   

13.
在聚邻甲苯胺 (POT)膜修饰电极上用电化学法沉积Pt微粒 ,由SEM与XRD表征其表面形态与晶面取向 ,同时研究异丙醇在金属化POT膜电极上的氧化行为 .结果表明 ,Pt在POT膜上的沉积呈现晶面择优取向的现象 ,况且POT质子掺杂后 ,由于电化学活性增强 ,影响了沉积铂微粒的尺寸和粒径分布 .异丙醇的电氧化可发生在POT的电化学活性区 ,当电位大于 0 .70V(SCE)时 ,POT不再呈氧化还原活性 ,异丙醇的电氧化主要在铂微粒上进行 .聚合物不仅作为铂微粒的载体而且自身参加反应 ,这种微异相催化体系需用新的模型描述  相似文献   

14.
The adsorption of carbon monoxide and the anodic oxidation of the chemisorbed species were investigated at room temperature under the same experimental conditions on foils of smooth and platinized platinum for which hydrogen adsorption is very similar. Both the weakly and strongly bonded species (type II and type I species) were formed to the same extent on the two electrodes in acidic electrolytes. While the freshly platinized platinum electrode behaved like the smooth electrode with predominance of the one-site adsorption of CO, the aging of the platinized electrode led to an increase of the two-site adsorption. The oxidation rate of strongly bonded species at constant potential decreased when the extent of two-site adsorption increased. The electrochemical results are discussed in the light of recent work in the gas phase.  相似文献   

15.
A comparative investigation of electrocatalytic and adsorption properties of platinum microparticles electrodeposited onto a glassy carbon surface (Pt/GC) and within a thin Nafion® film formed on a GC electrode (Pt/Nf/GC) is described. As test reaction the methanol oxidation in sulfuric acid solutions is used. Dependences of the steady-state specific reaction rates upon potential and methanol concentration were established, as well as those of the platinum surface coverage with methanol chemisorption products upon concentration. It was shown that at higher platinum loadings (above 60 μg cm−2) the specific activities of Pt/GC and Pt/Nf/GC are nearly the same and close to that of smooth platinum. At such loadings the surface coverage of the platinum deposit surface with organic particles does not differ from that of smooth platinum. At very low platinum loadings in the polymeric matrix (10–30 μg cm−2) a considerable decrease in the adsorption of strongly chemisorbed methanol particles is observed. These deposits are characterized by a low specific activity, which may be caused by the decrease of the platinum particle’s size, leading to a decrease in the amount of weakly bound methanol particles participating in the limiting reaction step.  相似文献   

16.
Kinetics and mechanism of nitrate anion reduction on the Pt(100) electrode in perchloric and sulfuric acid solutions are studied. Analysis of the results of electrochemical measurements (combination of potentiostatic treatment and cyclic voltammetry) and the data of in situ IR spectroscopy allow suggesting the following scheme of the nitrate reduction process on Pt(100) differing from that in the literature. If the potential of 0.85 V is chosen as the starting potential for a clean flame-annealed electrode surface and negativegoing (cathodic) potential sweep is applied, then an NO adlayer with the coverage of about 0.5 monolayer is formed on Pt(100) in the nitrate solution already at 0.6 V. The further decrease in the potential results in NO reduction to hydroxylamine or/and ammonia, desorbing products vacate the adsorption sites for nitrate and hydrogen adatoms. At E < 0.1 V, adsorbed hydrogen is mostly present on the surface. During positive-going (anodic) potential sweep, the process of nitrate reduction starts after partial hydrogen desorption, the cathodic peak of nitrate reduction to hydroxylamine or ammonia is observed at 0.32 V on cyclic voltammograms. The process of nitrate anion reduction continues up to 0.7 V; at higher potentials, the surface redox process with participation of hydroxylamine or ammonia (the anodic peak at 0.78 V) and nitrate (the cathodic peak at 0.74 V is due to nitrate reduction to NO on the vacant adsorption sites) occurs.  相似文献   

17.
Electrochemical quartz crystal nanobalance (EQCN) is one of the most powerful tools to obtain information on the events occurring at the electrode surface. This method has been exploited to monitor the surface mass changes and hence to draw conclusions in respect of the formation and removal of adsorbed species and oxides as well as changes in the electrochemical double layer also in the case of platinum electrodes. However, the results that had been obtained so far are somewhat contradictory, and consequently diverse interpretations can be found in the literature. Therefore, it is worth to review the knowledge accumulated and to carry out systematic study in this respect. In this work smooth and platinized platinum electrodes in contact with acidic solutions were studied using EQCN technique. The effects of temperature, the nature of cations and anions, pH, concentrations, potential range were investigated on the electrochemical, and the simultaneously detected nanogravimetric responses. It is shown that in the underpotential deposition (upd) of hydrogen the adsorption/desorption of species from the solution phase is governed by the oxidative desorption/reductive adsorption of hydrogen; however, unambiguos conclusions cannot be drawn regarding the actual participation of anions and water molecules in the surface coverage. In the hydrogen evolution region a weak cation adsorption can be assumed and the potential of zero charge can be estimated. Cs+ cations affect the EQCN response in the hydrogen upd region. In some cases, e.g., in the case of upd of zinc the mass change can be explained by an induced anion adsorption. Two types of dissolution processes have been observed. A platinum loss was detected during the reduction of platinum oxide, the extent of which depends on the positive potential limit and the scan rate, and to a lesser extent on the temperature. The platinum dissolution during the electroreduction of oxide is related to the interfacial place exchange of the oxygen and platinum atoms in the oxide region. At elevated temperatures two competitive processes take place at high positive potentials: a dissolution of platinum and platinum oxide formation.  相似文献   

18.
Using the rotating ring (platinum)—disk (glassy carbon) electrode methodology, electrocatalytic activity of the microstructured copper centers (imbedded within the polyvinylpyrrolidone polymer matrix and deposited onto the glassy carbon disk electrode) has been monitored during electroreduction of carbon dioxide both in acid (HClO4) and neutral (KHCO3) media as well as diagnosed (at Pt ring) with respect to formation of the electroactive products. Combination of the stripping-type and rotating ring-disk voltammetric approaches has led to the observation that, regardless the overlapping reduction phenomena, the reduction of carbon dioxide at copper catalyst is, indeed, operative and coexists with hydrogen evolution reaction. Using the fundamental concepts of surface electrochemistry and analytical voltammetry, the reaction products (thrown onto the platinum ring electrode) could be considered and identified as adsorbates (on Pt) under conditions of the stripping-type oxidation experiment. Judging from the potentials at which the stripping voltammetric peaks appear in neutral CO2-saturated KHCO3 (pH 6.8), formic acid or carbon monoxide seem to be the most likely reaction products or intermediates. The proposed methodology also permits correlation between the CO2 electroreduction products and the potentials applied to the disk electrode. By performing the comparative stripping-type voltammetric experiments in acid medium (HClO4 at pH 1) with the adsorbates of formic acid, ethanol and acetaldehyde (on Pt ring), it can be rationalized that, although C2H5OH or CH3CHO are very likely CO2-reduction electroactive products, formation of some HCOOH, CH3OH or even CO cannot be excluded.  相似文献   

19.
Bulk CO oxidation experiments have been carried out in sulphuric and perchloric acid solutions on Pt(1 1 1) and Pt(1 1 0) electrodes under hanging meniscus rotating disk electrode (HMRDE) configuration. The comparison between the two different electrolytic media reveals an important influence of the anion in the oxidation kinetics. Once the adsorbed CO layer has been oxidized after the ignition peak, anions are re-adsorbed on the electrode surface and the presence of these anions affects the stationary currents measured at positive potentials. In the negative-going sweep, adsorbed anions are displaced from the surface when the CO oxidation rate is lower than the corresponding CO adsorption rate. The charge associated to this displacement has been measured at high scan rates and is in agreement with that expected from the CO displacement experiments performed at low potentials.  相似文献   

20.
Tungstate ions may be reversibly reduced at platinum, rhodium and mercury electrodes in phosphoric acid according to the reaction WO42-+e- ? WO43-. The specific rate constants (ks) on Pt, Rh and Hg are 1.2.10-2, 7.0.10-3, and 6.5.10-4 cm/sec, respectively. In the presence of carbon monoxide, hydrogen evolution at Pt and Rh is blocked while the electron transfer for tungstate reduction is unhindered. This is used as a criterion for a surface dissociation or recombination step in an electrochemical reaction. Two methods may be used with platinum or rhodium electrodes for the determination of tungstate, either rotating the electrode at a constant speed and measuring the diffusion current, or measuring the reduction peak height at a constant potential scan rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号