首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let (M,g) be an n-dimensional, compact Riemannian manifold and ${P_0(\hbar) = -\hbar{^2} \Delta_g + V(x)}$ be a semiclassical Schrödinger operator with ${\hbar \in (0,\hbar_0]}$ . Let ${E(\hbar) \in [E-o(1),E+o(1)]}$ and ${(\phi_{\hbar})_{\hbar \in (0,\hbar_0]}}$ be a family of L 2-normalized eigenfunctions of ${P_0(\hbar)}$ with ${P_0(\hbar) \phi_{\hbar} = E(\hbar) \phi_{\hbar}}$ . We consider magnetic deformations of ${P_0(\hbar)}$ of the form ${P_u(\hbar) = - \Delta_{\omega_u}(\hbar) + V(x)}$ , where ${\Delta_{\omega_u}(\hbar) = (\hbar d + i \omega_u(x))^*({\hbar}d + i \omega_u(x))}$ . Here, u is a k-dimensional parameter running over ${B^k(\epsilon)}$ (the ball of radius ${\epsilon}$ ), and the family of the magnetic potentials ${(w_u)_{u\in B^k(\epsilon)}}$ satisfies the admissibility condition given in Definition 1.1. This condition implies that kn and is generic under this assumption. Consider the corresponding family of deformations of ${(\phi_{\hbar})_{\hbar \in (0, \hbar_0]}}$ , given by ${(\phi^u_{\hbar})_{\hbar \in(0, \hbar_0]}}$ , where $$\phi_{\hbar}^{(u)}:= {\rm e}^{-it_0 P_u(\hbar)/\hbar}\phi_{\hbar}$$ for ${|t_0|\in (0,\epsilon)}$ ; the latter functions are themselves eigenfunctions of the ${\hbar}$ -elliptic operators ${Q_u(\hbar): ={\rm e}^{-it_0P_u(\hbar)/\hbar} P_0(\hbar) {\rm e}^{it_0 P_u(\hbar)/\hbar}}$ with eigenvalue ${E(\hbar)}$ and ${Q_0(\hbar) = P_{0}(\hbar)}$ . Our main result, Theorem1.2, states that for ${\epsilon >0 }$ small, there are constants ${C_j=C_j(M,V,\omega,\epsilon) > 0}$ with j = 1,2 such that $$C_{1}\leq \int\limits_{\mathcal{B}^k(\epsilon)} |\phi_{\hbar}^{(u)}(x)|^2 \, {\rm d}u \leq C_{2}$$ , uniformly for ${x \in M}$ and ${\hbar \in (0,h_0]}$ . We also give an application to eigenfunction restriction bounds in Theorem 1.3.  相似文献   

2.
Let $\mathfrak{g }$ be a complex, semisimple Lie algebra. Drinfeld showed that the quantum loop algebra $U_\hbar (L\mathfrak g )$ of $\mathfrak{g }$ degenerates to the Yangian ${Y_\hbar (\mathfrak g )}$ . We strengthen this result by constructing an explicit algebra homomorphism $\Phi $ from $U_\hbar (L\mathfrak g )$ to the completion of ${Y_\hbar (\mathfrak g )}$ with respect to its grading. We show moreover that $\Phi $ becomes an isomorphism when ${U_\hbar (L\mathfrak g )}$ is completed with respect to its evaluation ideal. We construct a similar homomorphism for $\mathfrak{g }=\mathfrak{gl }_n$ and show that it intertwines the actions of $U_\hbar (L\mathfrak gl _{n})$ and $Y_\hbar (\mathfrak gl _{n})$ on the equivariant $K$ -theory and cohomology of the variety of $n$ -step flags in ${\mathbb{C }}^d$ constructed by Ginzburg–Vasserot.  相似文献   

3.
According to Mukai and Iliev, a smooth prime Fano threefold $X$ of genus $9$ is associated with a surface $\mathbb{P }(\mathcal{V })$ , ruled over a smooth plane quartic $\varGamma $ , and the derived category of $\varGamma $ embeds into that of $X$ by a theorem of Kuznetsov. We use this setup to study the moduli spaces of rank- $2$ stable sheaves on $X$ with odd determinant. For each $c_2 \ge 7$ , we prove that a component of their moduli space $\mathsf{M}_X(2,1,c_2)$ is birational to a Brill–Noether locus of vector bundles with fixed rank and degree on $\varGamma $ , having enough sections when twisted by $\mathcal{V }$ . For $c_2=7$ , we prove that $\mathsf{M}_X(2,1,7)$ is isomorphic to the blow-up of the Picard variety $\text{ Pic}^{2}({\varGamma })$ along the curve parametrizing lines contained in $X$ .  相似文献   

4.
In this paper we study the Wigner transform for a class of smooth Bloch wave functions on the flat torus ${\mathbb{T}^n = \mathbb{R}^n /2\pi \mathbb{Z}^n}$ : $$\psi_{\hbar,P} (x) = a (\hbar,P,x) {\rm e}^{ \frac{i}{\hbar} ( P\cdot x + \hat{v}(\hbar,P,x) )}.$$ On requiring that ${P \in \mathbb{Z}^n}$ and ${\hbar = 1/N}$ with ${N \in \mathbb{N}}$ , we select amplitudes and phase functions through a variational approach in the quantum states space based on a semiclassical version of the classical effective Hamiltonian ${{\bar H}(P)}$ which is the central object of the weak KAM theory. Our main result is that the semiclassical limit of the Wigner transform of ${\psi_{\hbar,P}}$ admits subsequences converging in the weak* sense to Mather probability measures on the phase space. These measures are invariant for the classical dynamics and Action minimizing.  相似文献   

5.
Previous examples of non-type (D) maximal monotone operators were restricted to $\ell ^1$ , $L^1$ , and Banach spaces containing isometric copies of these spaces. This fact led to the conjecture that non-type (D) operators were restricted to this class of Banach spaces. We present a linear non-type (D) operator in $c_0$ .  相似文献   

6.
7.
We consider semiclassical Schr?dinger operators on the real line of the form $$H(\hbar)=-\hbar^2 \frac{{\rm d}^2}{{\rm d}x^2}+V(\cdot;\hbar)$$ with ${\hbar >0 }$ small. The potential V is assumed to be smooth, positive and exponentially decaying towards infinity. We establish semiclassical global representations of Jost solutions ${f_\pm(\cdot,E;\hbar)}$ with error terms that are uniformly controlled for small E and ${\hbar}$ , and construct the scattering matrix as well as the semiclassical spectral measure associated with ${H(\hbar)}$ . This is crucial in order to obtain decay bounds for the corresponding wave and Schr?dinger flows. As an application we consider the wave equation on a Schwarzschild background for large angular momenta ? where the role of the small parameter ${\hbar}$ is played by ? ?1. It follows from the results in this paper and Donninger et al. (Commun Math Phys 2009, arXiv:0911.3179), that the decay bounds obtained in Donninger et al. (Adv Math 226(1):484–540, 2011) and Donninger and Wilhelm (Int Math Res Not IMRN 22:4276–4300, 2010) for individual angular momenta ? can be summed to yield the sharp t ?3 decay for data without symmetry assumptions.  相似文献   

8.
Measuring how far a convex body $\mathcal{K }$ (of dimension $n$ ) with a base point ${O}\in \,\text{ int }\,\mathcal{K }$ is from an inscribed simplex $\Delta \ni {O}$ in “minimal” position, the interior point ${O}$ can display regular or singular behavior. If ${O}$ is a regular point then the $n+1$ chords emanating from the vertices of $\Delta $ and meeting at ${O}$ are affine diameters, chords ending in pairs of parallel hyperplanes supporting $\mathcal{K }$ . At a singular point ${O}$ the minimal simplex $\Delta $ degenerates. In general, singular points tend to cluster near the boundary of $\mathcal{K }$ . As connection to a number of difficult and unsolved problems about affine diameters shows, regular points are elusive, often non-existent. The first result of this paper uses Klee’s fundamental inequality for the critical ratio and the dimension of the critical set to obtain a general existence for regular points in a convex body with large distortion (Theorem A). This, in various specific settings, gives information about the structure of the set of regular and singular points (Theorem B). At the other extreme when regular points are in abundance, a detailed study of examples leads to the conjecture that the simplices are the only convex bodies with no singular points. The second and main result of this paper is to prove this conjecture in two different settings, when (1) $\mathcal{K }$ has a flat point on its boundary, or (2) $\mathcal{K }$ has $n$ isolated extremal points (Theorem C).  相似文献   

9.
Given a eigenvalue $\mu _{0m}^2$ of $-\Delta $ in the unit ball $B_1$ , with Neumann boundary conditions, we prove that there exists a class $\mathcal{D}$ of $C^{0,1}$ -domains, depending on $\mu _{0m} $ , such that if $u$ is a no trivial solution to the following problem $ \Delta u+\mu u=0$ in $\Omega , u=0$ on $\partial \Omega $ , and $ \int \nolimits _{\partial \Omega }\partial _{\mathbf{n}}u=0$ , with $\Omega \in \mathcal{D}$ , and $\mu =\mu _{0m}^2+o(1)$ , then $\Omega $ is a ball. Here $\mu $ is a eigenvalue of $-\Delta $ in $\Omega $ , with Neumann boundary conditions.  相似文献   

10.
We investigate the zeros of a family of hypergeometric polynomials $M_n(x;\beta ,c)=(\beta )_n\,{}_2F_1(-n,-x;\beta ;1-\frac{1}{c})$ , $n\in \mathbb N ,$ known as Meixner polynomials, that are orthogonal on $(0,\infty )$ with respect to a discrete measure for $\beta >0$ and $0<c<1.$ When $\beta =-N$ , $N\in \mathbb N $ and $c=\frac{p}{p-1}$ , the polynomials $K_n(x;p,N)=(-N)_n\,{}_2F_1(-n,-x;-N;\frac{1}{p})$ , $n=0,1,\ldots , N$ , $0<p<1$ are referred to as Krawtchouk polynomials. We prove results for the zero location of the orthogonal polynomials $M_n(x;\beta ,c)$ , $c<0$ and $n<1-\beta $ , the quasi-orthogonal polynomials $M_n(x;\beta ,c)$ , $-k<\beta <-k+1$ , $k=1,\ldots ,n-1$ and $0<c<1$ or $c>1,$ as well as the polynomials $K_{n}(x;p,N)$ with non-Hermitian orthogonality for $0<p<1$ and $n=N+1,N+2,\ldots $ . We also show that the polynomials $M_n(x;\beta ,c)$ , $\beta \in \mathbb R $ are real-rooted when $c\rightarrow 0$ .  相似文献   

11.
In this paper, we show the existence of positive $T$ -periodic solutions of second-order functional differential equations $u^{\prime \prime }(t)-\rho ^2u(t)+\lambda g(t)f(u(t-\tau (t)))=0,\ \ t\in \mathbb R , $ where $\rho >0$ is a constant, $g\in C(\mathbb R ,[0,\infty ))$ , $\tau \in C(\mathbb R ,\mathbb R )$ are $T$ -periodic functions, $f\in C([0,\infty ),[0,\infty ))$ and $\lambda $ is a positive parameter. Our approach based on global bifurcation theorem.  相似文献   

12.
We consider non-linear Schrödinger equations of the following type: $$\begin{aligned} \left\{ \begin{array}{l} -\Delta u(x) + V(x)u(x)-q(x)|u(x)|^\sigma u(x) = \lambda u(x), \quad x\in \mathbb{R }^N \\ u\in H^1(\mathbb{R }^N)\setminus \{0\}, \end{array} \right. \end{aligned}$$ where $N\ge 1$ and $\sigma >0$ . We will concentrate on the case where both $V$ and $q$ are periodic, and we will analyse what happens for different values of $\lambda $ inside a spectral gap $]\lambda ^-,\lambda ^+[$ . We derive both the existence of multiple orbits of solutions and the bifurcation of solutions when $\lambda \nearrow \lambda ^+$ . Thereby we use the corresponding energy function ${I_\lambda }$ and we derive a new variational characterization of multiple critical levels for such functionals: in this way we get multiple orbits of solutions. One main advantage of our new view on some specific critical values $c_0(\lambda )\le c_1(\lambda )\le \cdots \le c_n(\lambda )\le \cdots $ is a multiplicity result telling us something about the number of critical points with energies below $c_n(\lambda )$ , even if for example two of these values $c_i(\lambda )$ and $c_j(\lambda )$ ( $0\le i<j\le n$ ) coincide. Let us close this summary by mentioning another main advantage of our variational characterization of critical levels: we present our result in an abstract setting that is suitable for other problems and we give some hints about such problems (like the case corresponding to a Coulomb potential $V$ ) at the end of the present paper.  相似文献   

13.
14.
In this paper, we show that the extended modular group ${\hat{\Gamma}}$ acts on ${\hat{\mathbb{Q}}}$ transitively and imprimitively. Then the number of orbits of ${\hat{\Gamma} _{0}(N)}$ on ${\hat{\mathbb{Q}}}$ is calculated and compared with the number of orbits of ${\Gamma _{0}(N)}$ on ${\hat{\mathbb{Q}}}$ . Especially, we obtain the graphs ${\hat{G}_{u, N}}$ of ${\hat{\Gamma}_{0}(N)}$ on ${\hat{\mathbb{Q}}}$ , for each ${N\in\mathbb{N}}$ and each unit ${u \in U_{N} }$ , then we determine the suborbital graph ${\hat{F}_{u,N}}$ . We also give the edge conditions in ${\hat{G}_{u, N}}$ and the necessary and sufficient conditions for a circuit to be triangle in ${\hat{F}_{u, N}.}$   相似文献   

15.
In this paper, we prove stability of contact discontinuities for full Euler system. We fix a flat duct ${\mathcal{N}_0}$ of infinite length in ${\mathbb{R}^2}$ with width W 0 and consider two uniform subsonic flow ${{U_l}^{\pm}=(u_l^{\pm}, 0, pl,\rho_l^{\pm})}$ with different horizontal velocity in ${\mathcal{N}_0}$ divided by a flat contact discontinuity ${\Gamma_{cd}}$ . And, we slightly perturb the boundary of ${\mathcal{N}_0}$ so that the width of the perturbed duct converges to ${W_0+\omega}$ for ${|\omega| < \delta}$ at ${x=\infty}$ for some ${\delta >0 }$ . Then, we prove that if the asymptotic state at left far field is given by ${{U_l}^{\pm}}$ , and if the perturbation of boundary of ${\mathcal{N}_0}$ and ${\delta}$ is sufficiently small, then there exists unique asymptotic state ${{U_r}^{\pm}}$ with a flat contact discontinuity ${\Gamma_{cd}^*}$ at right far field( ${x=\infty}$ ) and unique weak solution ${U}$ of the Euler system so that U consists of two subsonic flow with a contact discontinuity in between, and that U converges to ${{U_l}^{\pm}}$ and ${{U_r}^{\pm}}$ at ${x=-\infty}$ and ${x=\infty}$ respectively. For that purpose, we establish piecewise C 1 estimate across a contact discontinuity of a weak solution to Euler system depending on the perturbation of ${\partial\mathcal{N}_0}$ and ${\delta}$ .  相似文献   

16.
Let $\mathcal{R }$ be a prime ring of characteristic different from $2, \mathcal{Q }_r$ the right Martindale quotient ring of $\mathcal{R }, \mathcal{C }$ the extended centroid of $\mathcal{R }, \mathcal{I }$ a nonzero left ideal of $\mathcal{R }, F$ a nonzero generalized skew derivation of $\mathcal{R }$ with associated automorphism $\alpha $ , and $n,k \ge 1$ be fixed integers. If $[F(r^n),r^n]_k=0$ for all $r \in \mathcal{I }$ , then there exists $\lambda \in \mathcal{C }$ such that $F(x)=\lambda x$ , for all $x\in \mathcal{I }$ . More precisely one of the following holds: (1) $\alpha $ is an $X$ -inner automorphism of $\mathcal{R }$ and there exist $b,c \in \mathcal{Q }_r$ and $q$ invertible element of $\mathcal{Q }_r$ , such that $F(x)=bx-qxq^{-1}c$ , for all $x\in \mathcal{Q }_r$ . Moreover there exists $\gamma \in \mathcal{C }$ such that $\mathcal{I }(q^{-1}c-\gamma )=(0)$ and $b-\gamma q \in \mathcal{C }$ ; (2) $\alpha $ is an $X$ -outer automorphism of $\mathcal{R }$ and there exist $c \in \mathcal{Q }_r, \lambda \in \mathcal{C }$ , such that $F(x)=\lambda x-\alpha (x)c$ , for all $x\in \mathcal{Q }_r$ , with $\alpha (\mathcal{I })c=0$ .  相似文献   

17.
Let $\alpha $ and $\beta $ be real numbers such that $1$ , $\alpha $ and $\beta $ are linearly independent over $\mathbb {Q}$ . A classical result of Dirichlet asserts that there are infinitely many triples of integers $(x_0,x_1,x_2)$ such that $|x_0+\alpha x_1+\beta x_2| < \max \{|x_1|,|x_2|\}^{-2}$ . In 1976, Schmidt asked what can be said under the restriction that $x_1$ and $x_2$ be positive. Upon denoting by $\gamma \cong 1.618$ the golden ratio, he proved that there are triples $(x_0,x_1,x_2) \in \mathbb {Z}^3$ with $x_1,x_2>0$ for which the product $|x_0 + \alpha x_1 + \beta x_2| \max \{|x_1|,|x_2|\}^\gamma $ is arbitrarily small. Although Schmidt later conjectured that $\gamma $ can be replaced by any number smaller than $2$ , Moshchevitin proved very recently that it cannot be replaced by a number larger than $1.947$ . In this paper, we present a construction of points $(1,\alpha ,\beta )$ showing that the result of Schmidt is in fact optimal. These points also possess strong additional Diophantine properties that are described in the paper.  相似文献   

18.
Let $\theta (\zeta )$ be a Schur operator function, i.e., it is defined on the unit disk ${\mathbb D}\,{:=}\,\{\zeta \in {\mathbb C}: |\zeta | < 1\}$ and its values are contractive operators acting from one Hilbert space into another one. In the first part of the paper the outer and $*$ -outer Schur operator functions $\varphi (\zeta )$ and $\psi (\zeta )$ which describe respectively the deviations of the function $\theta (\zeta )$ from inner and $*$ -inner operator functions are studied. If $\varphi (\zeta )\ne 0$ , then it means that in the scattering system for which $\theta (\zeta )$ is the transfer function a portion of “information” comes inward the system and does not go outward, i.e., it is left in the internal channels of the system ([11, Sect. 6]). The function $\psi (\zeta )$ has the analogous property. For this reason these functions are called defect ones of the function $\theta (\zeta )$ . The explicit form of the defect functions $\varphi (\zeta )$ and $\psi (\zeta )$ is obtained and the analytic connection of these functions with the function $\theta (\zeta )$ is described ([11, Sect. 3 and Sect. 5]). The operator functions $\left( \begin{matrix} \varphi (\zeta ) \\ \theta (\zeta ) \end{matrix}\right) $ and $(\psi (\zeta ), \theta (\zeta ))$ are Schur functions as well ([11, Sect. 3]). It is important that there exists the unique contractive operator function $\chi (t),t\in \partial {\mathbb D}$ , such that the operator function $\left( \begin{matrix} \chi (t) &{} \varphi (t) \\ \psi (t) &{} \theta (t) \end{matrix}\right) ,t\in \partial {\mathbb D},$ is also contractive (Sect. 6). The second part of the paper is devoted to introducing and studying the properties of the function $\chi (t)$ . Specifically, it is shown that the function $\chi (t)$ is the scattering suboperator through the internal channels of the scattering system for which $\theta (\zeta )$ is the transfer function (Sect. 6).  相似文献   

19.
If $G$ is a triangle-free graph, then two Gallai identities can be written as $\alpha (G)+\overline{\chi }(L(G))=|V(G)|=\alpha (L(G))+\overline{\chi }(G)$ , where $\alpha $ and $\overline{\chi }$ denote the stability number and the clique-partition number, and $L(G)$ is the line graph of  $G$ . We show that, surprisingly, both equalities can be preserved for any graph $G$ by deleting the edges of the line graph corresponding to simplicial pairs of adjacent arcs, according to any acyclic orientation of  $G$ . As a consequence, one obtains an operator $\Phi $ which associates to any graph parameter $\beta $ such that $\alpha (G) \le \beta (G) \le \overline{\chi }(G)$ for all graph $G$ , a graph parameter $\Phi _\beta $ such that $\alpha (G) \le \Phi _\beta (G) \le \overline{\chi }(G)$ for all graph $G$ . We prove that $\vartheta (G) \le \Phi _\vartheta (G)$ and that $\Phi _{\overline{\chi }_f}(G)\le \overline{\chi }_f(G)$ for all graph  $G$ , where $\vartheta $ is Lovász theta function and $\overline{\chi }_f$ is the fractional clique-partition number. Moreover, $\overline{\chi }_f(G) \le \Phi _\vartheta (G)$ for triangle-free $G$ . Comparing to the previous strengthenings $\Psi _\vartheta $ and $\vartheta ^{+ \triangle }$ of $\vartheta $ , numerical experiments show that $\Phi _\vartheta $ is a significant better lower bound for $\overline{\chi }$ than $\vartheta $ .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号